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Abstract. Despite the success of vision-based dynamics prediction mod-
els, which predict object states by utilizing RGB images and simple ob-
ject descriptions, they were challenged by environment misalignments.
Although the literature has demonstrated that unifying visual domains
with both environment context and object abstract, such as semantic
segmentation and bounding boxes, can effectively mitigate the visual do-
main misalignment challenge, discussions were focused on the abstract of
environment context, and the insight of using bounding box as the object
abstract is under-explored. Furthermore, we notice that, as empirical re-
sults shown in the literature, even when the visual appearance of objects
is removed, object bounding boxes alone, instead of being directly fed
into the network, can indirectly provide sufficient position information
via the Region of Interest Pooling operation for dynamics prediction.
However, previous literature overlooked discussions regarding how such
position information is implicitly encoded in the dynamics prediction
model. Thus, in this paper, we provide detailed studies to investigate
the process and necessary conditions for encoding position information
via using the bounding box as the object abstract into output features.
Furthermore, we study the limitation of solely using object abstracts,
such that the dynamics prediction performance will be jeopardized when
the environment context varies.

1 Introduction

Dynamics prediction [2,3,10,13,19], which aims at predicting the state of the ob-
ject of interest in the future by referencing previous states, has drawn increasing
attention. Physics-state-based models [2,3] take well-defined physics parameters,
such as position, mass, and velocity, as inputs and derive the future state via
pre-defined physics models [1, 5, 16] or deep neural networks (DNNs) [2, 3, 17].
However, since the visual information is completely absent from dynamics pre-
diction, such steam of methods is limited and challenged when being applied to
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(a) Visual Inputs
Zero Pad w/ bias

(b) All-Zeros Inputs
Zero Pad w/ bias 

(c) All-Zeros Inputs
Zero Pad w/o bias 

(e) All-Ones Inputs
Reflect Pad w/ bias 

(d) Fixed-Random Inputs
Reflect Pad w/ bias 

Fig. 1: Illustration of output features of Hourglass module with various inputs and
padding settings, and depiction of the process of position information encoding utilizing
bounding-box and RoI Pooling operation. The position information can be encoded
when there is inconsistency in the distribution of output features of the Hourglass
module, where different values across fragmented object state features are incorporated
to encode position information. Such inconsistency can be brought up by either proper
padding settings or discrepancies existing in original inputs.

real-world problems due to the possible complexity of the environment context
where the set of structured, sophisticated, and accurate physics parameters can
be hard to acquire. Furthermore, obtaining the sophisticated physics models and
the corresponding systematic physics parameters is challenging and requires ex-
pert knowledge [19]. To better generalize the dynamics prediction model, Qi et
al. [13] proposed Region Proposal Convolutional Internation Network (RPCIN),
a vision-based dynamics prediction model, which simplified the inputs to be a
sequence of RGB images and simple object descriptions, e.g., bounding-boxes.
RPCIN utilizes convolutional neural network (CNN) and Region of Interest (RoI)
Pooling operation [7,14] to extract each object state feature within the environ-
ment context where an interaction network [2] processes all the state features for
predicting future state. Despite previous success, such end-to-end vision-based
dynamics prediction models, like RPCIN, may find a shortcut to minimize the
empirical loss and overfit to the training environment. Thus, the explainability of
the model can be poor and the model can suffer from environment misalignment
challenges, such as the cross-domain challenge [19].

To address the cross-domain challenge, Xie et al. [19] argued to first map the
original visual appearance of both objects of interest and environment context to
the abstract space. Despite the difference in the appearance details across visual
domain, the respected representations in such abstract space stay the same. For
example, while the appearance of vehicles can differ between the real world [4]
and video games [15], their semantic segmentation masks, as instances of the
abstract space, are the same. Then, the dynamics prediction is performed on the
abstract space so that various visual domains can be aligned. In the scope of
the billiard game discussed in [19], the object bounding-box and the semantic
segmentation of environment context were used as the instance of abstract space
for billiard balls and billiard table, respectively. However, they mainly studied
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abstracting the environment context, where the discussion on the insights of
the usage of bounding-box as the abstract of objects was neglected. We also
noticed that, as the empirical studies demonstrated in [19], when replacing the
RGB image with the semantic segmentation of the environment context, where
the visual information of objects of interest is completely missing, the vision-
based model can still maintain an outstanding performance. Under this scenario,
since the visual information of object is missing, the bounding-boxes of each
object are the only source that contains the object position information. Instead
of serving as direct inputs, bounding-box is merely consumed by RoI Pooling
operation to fragment the object state features from the whole outputs of the
CNN backbone. Therefore, based on those observations, we hypothesize that the
object position information is implicitly ‘captured’ by the CNN for dynamics
prediction. Therefore, in this paper, we aim to study the insight of using the
object bounding-box as the object abstract for dynamics prediction, especially
emphasizing the rationale behind the indirect position encoding by performing
RoI Pooling according to the object bounding-box.

Islam et al. [8] discussed that the spatial information is derived from zero
padding by utilizing a classification or semantic segmentation pretrained CNN
backbone to predict synthesized gradient-like position map. However, their em-
pirical experiments were orthogonal to both classification and semantic segmen-
tation, which are the tasks of the pretrained backbones. Furthermore, they only
study the effect of zero padding, where other padding modes are overlooked.
Although in a recent work [9], Islam et al. provide additional investigation with
more tasks and padding modes, the discussion on the position encoding in the
dynamics prediction is still missing. Nevertheless, those previous works still in-
spire us to speculate that the position information inherent in object abstract is
indirectly ‘captured’ by CNN through padding and, then, leveraged for dynam-
ics prediction. Specifically, we hypothesize that the padding enables the CNN
to encode position information to its output features. Subsequently, by perform-
ing RoI Pooling operation with respect to the the bounding-boxes, the object
state features fragmented from the whole CNN output contains object position
descriptions.

In order to verify our assumption, following [19], we used RPCIN [13] as a
probe and conducted experiments on SimB dataset proposed by [13] where only
dynamics between objects are involved, and all objects share the same physics
properties. Without loss of generality, despite the simplicity of the dataset, it pro-
vides an ideal template for focusing on the discussion of position encoding insight,
and the conclusion can also be generalized to a more complex scenario. To solely
utilize bounding-box for providing object position information and thoroughly
investigate the process of extracting position information, we replace the visual
information with several synthetic inputs, such as all ones, all zeros, or random
inputs, and explore the different hyper-parameter settings of padding. Different
from classification or semantic segmentation used in [8], position information is
critical for a correct dynamics prediction. Therefore, the model performance can
directly reveal the capability of the position encoding. Our experiments show
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Fig. 2: Illustration of our investigation details. 1) We replace the original Hourglass
Module input, which is the output of the original backbone, with All-Zeros Input, All-
Ones Input, and Random Input to study the effect on the global feature map of various
meaningless inputs; 2) We test multiple CNN padding methods in the Hourglass Mod-
ule, which are Zero-Pad, Reflect-Pad, Replicate-Pad, and Circular-Pad, to study the
effect on the the global feature map of various padding setting. Further, we also studied
the joint effect of padding modes with or without the bias weights (not illustrated). We
include a simple illustration of the Hourglass Module [11] and RPCIN [13] for comple-
tion and refer readers to the original papers for detailed illustrations and discussions.

that, as also demonstrated in Figure 1, when the underlying environment con-
text stays unaltered for all scenes, the distinctions between object state features,
fragmented from different parts of CNN outputs, are essential for encoding ob-
ject position information for dynamics prediction. A proper padding setting can
lead to such distinctions, and the randomness in the model inputs can also have
a similar capability. On the contrary, when the environment context varies, such
as SimB-Border and SimB-Split, merely relying on the position encoding of ob-
jects is insufficient for dynamics prediction. By investigating the mechanisms of
how models handle different types of input data and environmental contexts,
our work sheds light on the adaptability and explainability of AI systems on
applications that require position encoding. Furthermore, by understanding the
limitations of current approaches in handling various environment contexts, our
work also suggests developing an explainable model to encode and process the
complex environment context can be a possible future research to improve the
performance and generality of dynamics prediction models in real-world appli-
cations.

2 Preliminary

Following [19], this work focuses on predicting dynamics in a billiard game sce-
nario and using RPCIN [13] as a probe, which is evaluated by both short-term
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and long-term prediction performance [13]. During the training phase, the model
refers to a sequence of Tref consecutive image frames, denoted as X1−Tref

...X0,
along with corresponding reference ball states in the respective frame, denoted
as S1−Tref

...S0. The goal of the model is to predict the ball states for the next
Tpred frames, represented as S′

1...S
′
Tpred

, which are compared with ground-truth
states S1...STpred

for supervised training. In the inference phase, the model uti-
lizes the sequences X1−Tref

...X0 and S1−Tref
...S0 as reference to predict the

short-term states S′
1...S

′
Tpred

and the long-term states S′
Tpred+1...S

′
2Tpred

, where
two predictions are evaluated separately. RPCIN [13] was proposed as an end-to-
end solution which leverages only the bounding-box information of each ball to
represent the frame state S. By employing RoI Pooling operation [6,7], RPCIN
directly fragments and extracts the ball state features bi from the whole visual
features encoded by a CNN backbone from the RGB image for each reference
frame. For a comprehensive understanding, we will provide a brief summary of
RPCIN, while directing readers to [13] for detailed descriptions and discussions.
As described in [13, 19], to infer the dynamics of each ball by utilizing the ball
state features bi, RPCIN incorporate Convolutional Interation Network (CIN)
which is composed of five CNNs, denoted as fO, fR, fA, fZ , and fP [13]. Firstly,
the self-dynamics feature of the i-th ball at the t-th frame is derived by fO with
bti as input. Correspondingly, the pairwise relative-dynamics feature between i-
th ball and j-th ball in the same frame is computed by fR with both bti and btj
as inputs. Secondly, the overall-dynamics feature eti is derived by fA, where the
input is the summation of the self-dynamics feature and all relative-dynamics
features with respect to i-th ball at t-th frame. Thirdly, the static-dynamics fea-
tures zti is computed by fZ with bti and eti as inputs. Finally, the state feature
of i-th ball at the next frame t+1 can be predicted by fP which consumes zi of
previous Tref frames as input. The overall calculation is expressed in 1 [13].

eti = fA(fO(b
t
i) +

∑
j ̸=i

fR(b
t
i, b

t
j)),

zti = fZ(b
t
i, e

t
i),

bt+1
i = fP (z

t
i , z

t−1
i , ..., z

t−Tref+1
i )

(1)

3 Investigate How Position Information is Utilized in
Dynamics Prediction

In order to investigate and reveal insight into how the dynamics predictions
model solely utilizes bounding-boxes and RoI Pooling operations to indirectly
provide spatial information to encode and process position information, we con-
duct experiments by altering network inputs and modifying padding settings.
Specifically, to study the contribution of different network inputs, as shown in
Fig. 2, we replace the meaningful visual features that are extracted from the
RGB visual inputs (e.g., video frames) with synthesized features while keeping
the environment context consist. We also modify padding setting to investigate
its effect on encoding position information for dynamics prediction.
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In the following sections, we will first describe the experiment settings and
then discuss how position information is utilized. Furthermore, we provide em-
pirical results to show that when environment context varies, merely relying
on object abstracts and the model’s capability of indirect position encoding is
insufficient for accurate dynamics prediction.

3.1 Backbone Details Modifications

The entire dynamics model is composed of two major components: Hourglass
backbone [11] for extracting visual features and CIN module [13] to infer dy-
namics. Since RoI Pooling operation is applied on the output feature of Hour-
glass backbone, all spatial information should already be encoded in such output
features, where CIN module will simply utilize those features for dynamics pre-
diction. Therefore, our experiments focus on the details and the encoding mech-
anism within the Hourglass backbone, which lead to the distinctions between
output features of different objects that are sufficient for correctly identifying
their state.

Hourglass backbone [11] is composed of a CNN with residual module to
downsample the RGB input to a smaller scale for reducing computation com-
plexity, and followed by a Hourglass module to refine the visual information [13].
Therefore, to better analyze the influence of network detail on position informa-
tion encoding and reduce the possible nuisance impact inherent in the network
complexity, we focus on the modifications related to the Hourglass module. In
detail, our major modifications are made in two folds, as illustrated in 2: (1)
replacing the meaningful visual inputs to Hourglass module with synthesized
inputs, such as All-Zeros Inputs, All-Ones Inputs and Random Inputs, and (2)
changing the padding mode, such as Zero-Pad, Reflect-Pad, Replicated-Pad, and
Circular-Pad, and padding size within Hourglass module. Additionally, to fur-
ther increase the comprehensiveness of our investigation on the padding mode,
we also studied the joint effect of padding modes with and without the bias
weights.

3.2 Datasets and Metrics

To surgically study the process of position information extraction, we conduct
experiments on SimB dataset [13], which simulate three balls billiard scenario.
There are 1000 video clips for training and testing respectively, where each video
clip contains 100 frames. The resolution of each frame is 64×64. The environment
context stays constant for all video frames, all balls have the same physical
properties, and the ball objects bounce when hitting image boundaries or other
balls. Thus, given the property of the dataset, the object bounding-box, which
serves as the object abstract, can provide sufficient position information for
accurate dynamics prediction.

In addition, to investigate the deficiency of the object abstract and the limi-
tation of merely relying on the model’s mechanism of indirect position encoding,
we evaluate the model performance when only object abstract is utilized on
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Table 1: Quantitative comparison of different padding modes with bias weights within
CNN kernels trained on different types of input. We highlight the performance of the
model, which fails to encode position information in bold. P1 and P2 measure the
prediction errors for short-term and long-term dynamics prediction, respectively.

Padding Mode (w/ bias) Zero Reflect Replicate Circular

Eval Period P1 ↓ P2 ↓ P1 ↓ P2 ↓ P1 ↓ P2 ↓ P1 ↓ P2 ↓

Visual Inputs 2.72±0.31 27.94±1.08 2.74±0.30 28.43±1.21 2.82±0.42 28.94±1.11 2.73±0.42 28.03±1.09

All-Zeros Inputs 2.97±0.53 29.83±1.13 144.34 ±0.21 145.14±0.31 144.35±0.31 145.51±0.30 144.42±0.30 145.08±0.31

All-Ones Inputs 3.11±0.49 30.48±1.48 144.43±0.30 145.17±0.32 144.43±0.31 145.17±0.29 144.43±0.32 145.09±0.21

Fixed-Random Inputs 2.91±0.47 30.03±1.15 3.01±0.42 31.48±1.67 3.04±0.52 29.56±1.08 3.17±0.46 30.46 ±1.81

Random Inputs 3.00±0.55 29.40±0.96 2.90±0.41 30.68±1.09 3.17±0.48 31.09±1.09 2.98±0.39 29.07±1.73

datasets extended from SimB proposed by [19]: SimB-Border and SimB-Split.
SimB-Border increases the image resolution to 192×96 and adds borders to the
image boundaries, where the size of borders is randomly selected as integers in
the range of [0, 15] and is fixed for all frames in one video. To further increase
the prediction difficulty, SimB-Split adds five-pixels wide vertical bar into the
scene of SimB-Border, where the center of the vertical bar is placed at a location
randomly chosen as an integer in the range of [64, 128] and kept constant over all
frames in one video. To train the model, following [13,19], the length of the ref-
erence frame is set to four, and the length of training prediction frames is set to
20. For evaluation, performances of short term predictions {1, ...Tpred} (P1) and
long term predictions {Tpred+1, ...2Tpred} (P2) are separately evaluated, where
squared l2 distance between predictions and ground-truth are scaled by 1000 to
be used as evaluation metric. Hyper-parameters settings, other than the studies
we focus on, stay the same with [13,19].

3.3 How Position Information Is Utilized

As discussed in Section 3.1, in order to remove environment visual information
and narrow the model focus on object abstracts, we replace the meaningful visual
features, Visual Inputs, with four types of synthesized inputs: All-Zeros Inputs,
All-Ones Inputs, Fixed-Random Inputs and Random Inputs. All-Zeros Inputs
and All-Ones Inputs are features of all values of zero or one with the same size
of Visual Inputs. Fixed-Random Inputs and Random Inputs are both features
with randomly generated values with the same size as Visual Inputs. Fixed-
Random Inputs only generate such random features once before training and stay
the same throughout the training process, whereas Random Inputs randomly
generate such features for each iteration. For the selections of padding mode, we
conduct experiments with four padding modes provided by PyTorch [12]: Zero
Pad, Reflect Pad, Replicate Pad and Circular Pad. Furthermore, we investigate
the combined effect of using different padding modes with or without the bias
weights in the CNN kernels.
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Table 2: Quantitative comparison of different padding modes without bias weights
within CNN kernels trained on different types of input. We highlight the performance
of the model, which fails to encode position information in bold. P1 and P2 measure
the prediction errors for short-term and long-term dynamics prediction, respectively.

Padding Mode (w/o bias) Zero Reflect Replicate Circular

Eval Period P1 ↓ P2 ↓ P1 ↓ P2 ↓ P1 ↓ P2 ↓ P1 ↓ P2 ↓

Visual Inputs 2.82±0.36 28.31±1.31 2.84±0.33 29.02±0.91 2.88±0.34 29.02±1.01 2.93±0.63 29.95±1.46

All-Zero Inputs 144.41±0.21 145.13±0.11 144.43±0.29 145.27±0.34 144.31±0.20 145.14±0.27 144.42±0.31 145.07±0.29

All-Ones Inputs 3.36±0.45 31.45±1.37 144.37±0.21 145.17±0.37 144.43±0.29 145.08±0.21 144.43±0.36 145.14±0.30

Fixed-Random Inputs 3.15±0.39 31.83±0.96 3.26±0.40 31.98±1.14 3.22±0.52 30.56±1.51 3.21±0.47 31.46±1.31

Random inputs 3.19±0.42 31.36±1.10 3.09±0.32 31.03±1.25 3.08±0.44 31.12±1.46 3.02±0.35 30.07±0.58

As shown in Table 1, when including the bias weights within CNN kernels
and utilizing default padding mode (Zero Pad) [13], compared to Visual Inputs,
all synthesized inputs achieve comparable performance on both short-term and
long-term predictions. This implies that, even without visual information, the
object abstracts can provide sufficient position information for dynamics predic-
tion. By further examining the Table 1 and checking the performance of different
combinations of padding modes and inputs, all combinations with Random In-
puts can achieve good performance whereas the constant inputs can only work
with Zero Pad and fail on all other padding modes.

In order to better understand the insights behind the numerical results, we
visualize the sample output features, as demonstrated in Fig. 1. The visualiza-
tions suggest that creating an inconsistency across the output feature space of
the Hourglass module is necessary for fragmenting object state features with
distinct values corresponding to bounding-boxes at different locations. When
the environment context stays constant, the state features represented by possi-
bly random but distinct numerical values enable the model to implicitly encode
sufficient position information for accurate dynamics prediction. Since Random
inputs already create such inconsistency in the input space, models with various
padding modes can all satisfy such necessity. Contrarily, when inputs are con-
stant and bias weights is utilized in CNN kernels, only Zero Pad can achieve
good performance, and other padding modes fail to create such inconsistency
across the output feature space of Hourglass module. Since the failed padding
modes simply copy the value of the edge features, the features after padding
are still the same everywhere. Noticeably, when inputs are All-Zeros, the model
with Zero Pad can still achieve such inconsistency. This is due to the fact that
by using bias weight within the CNN kernel, the output value of the first CNN
layer will not be all zeros. Thus, inconsistency will be created by the Zero Pad in
the following CNN layers, which allows the model to achieve good performance.
As validated in Table 2, removing bias weights from CNN kernels results in un-
satisfactory performance for the combination of Zero Pad and All-Zeros Inputs,
as well as for combinations of other padding modes and constant inputs. As
previously discussed, Random Inputs alone can provide sufficient inconsistency
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Fig. 3: Quantitative comparison between different padding modes and padding size
with bias weight trained on Fixed-Random Inputs. We repeat the experiments of each
padding mode with 10 trials. This quantitative results reveal that when bias weight is
incorporated, models with different padding modes show comparable performance. P1
and P2 measure the prediction errors for short-term and long-term dynamics prediction,
respectively.

so that good dynamics prediction performance can be yielded with all padding
modes even without the bias weights in the CNN kernels.

3.4 How Padding Hyper-Parameters Affect the Encoding

As discussed in Section 3.3, when object abstracts are solely available, the po-
sition information can be inferred if inconsistency across output features of the
Hourglass module exists. To further investigate the ramifications of changing
hyper-parameters of padding for dynamics prediction, we conduct comprehen-
sive experiments by both altering the mode of the padding and changing the
size of the padding. Following experiments discussed in Section 3.3, to empower
position information encoding for all padding modes while removing visual in-
formation, we replace the Visual Inputs with Fixed-Random Inputs. As shown
in Figure 3, changing the padding size will not significantly affect the dynamics
prediction performance. This implies that as long as aforementioned inconsis-
tency exists on the output features space of the Hourglass module, sufficient
position information can be encoded in object state features for correct dynam-
ics prediction.

3.5 When Environment Information Is Necessary

Our previous experiments empirically demonstrate that position information
can be inferred from object abstracts. Such position information is provided by
inconsistencies across the output feature space of the Hourglass module, which
can be created by either proper padding settings or inconsistencies in the inputs.
However, as discussed in [19], in order to accurately predict object dynamics on
SimB-Border and SimB-Split, methods are required to utilize the environment
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Table 3: Quantitative comparison of various inputs on SimB-Border and SimB-Split
datasets. Results reported in [19] was used as the Visual Inputs Performance. The best
results are highlighted in bold. P1 and P2 measure the prediction errors for short-term
and long-term dynamics prediction, respectively.

Dataset SimB-Border SimB-Split

Eval Period P1 ↓ P2 ↓ P1 ↓ P2 ↓

Visual Inputs [19] 1.13±0.01 9.57±0.12 0.91±0.02 7.73±0.21

All-Zero Inputs 2.04±0.02 11.89±0.22 3.68±0.05 16.85±0.13

Fixed-Random Inputs 2.05±0.02 12.58±0.20 3.65±0.03 16.86±0.06

Table 4: Quantitative comparison of different padding modes with Fix-Random Inputs
on SimB-Border and SimB-Split datasets. Baseline is the Visual Input with Zero Pad
mode, and we use the performance reported in [19]. The best results are highlighted in
bold. P1 and P2 measure the prediction errors for short-term and long-term dynamics
prediction, respectively.

Dataset SimB-Border SimB-Split

Eval Period P1 ↓ P2 ↓ P1 ↓ P2 ↓

Baseline [19] 1.13±0.01 9.57±0.12 0.91±0.02 7.73±0.21

Zero 2.05±0.02 12.58±0.20 3.65±0.03 16.86±0.06

Reflect 2.04±0.02 12.23±0.25 3.61±0.05 16.71±0.38

Replicate 2.04±0.01 11.93±0.26 3.61±0.05 16.96±0.68

Circular 2.04±0.01 12.34±0.08 3.63±0.04 16.55±0.47

context information. Therefore, solely relying on object abstracts will not be suf-
ficient for accurate dynamics prediction. To verify such insufficiency, we replace
Visual Inputs with various synthesized inputs and evaluate different padding
modes, similar to previous studies in this paper. The results are shown in Ta-
bles 3 and 4, respectively.

When considering the environment context is critical, such as the environ-
ment context varies between videos, models merely utilizing object abstracts
only achieve mediocre performance. Furthermore, as shown in Tables 3 and 4,
the model performance becomes worse when the environment context becomes
more complex, i.e., the evaluation on SimB-Split where there is a vertical split-
ting bar randomly located in the scene.

3.6 Discussion Summary and Broader Impact

In this work, we demonstrate and analyze that when bounding box and region of
interest pooling are used to indirectly provide location information via feature
fragmenting, the distinctions between each object feature fragment are neces-
sary to encode object position information. Such distinctions can be created by
proper CNN padding or inconsistency in the input to the network backbone, as
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shown in Tables 1 and 2 and Fig. 1. Further, we emphasize that despite CNN’s
ability to implicitly encode position information, solely relying on the feature
fragments distinction for dynamics prediction, without utilizing any visual in-
formation, may only be valid when the environment context stays the same.
Should the environment context change, visual input containing environment
context is necessary for the vision-based dynamics prediction models to encode
sufficient information beyond the position of the object of interest for accurate
dynamics prediction. Aside from our discussions on SimB, we see that the dis-
coveries of our work have the potential to be generalized to other visual domains,
e.g., real-world domain because our study does not focus on any characteristic of
a specific visual domain. The insights provided by this study on how neural net-
works encode and utilize position information, even in an indirect manner, have
broader implications for the explainability and generalizability of AI systems.
Since the research community seeks to develop more versatile and adaptable
DNNs, understanding the mechanisms by which they represent and process fun-
damental information like spatial relationships is crucial. This knowledge can
inform the design of more robust and flexible architectures capable of handling
a wider range of tasks and environments, thus contributing to the overall scala-
bility and generalizability of AI systems. Therefore, we believe that beyond the
scope of dynamics prediction, our work can also benefit other research fields
where correctly encoding position information is essential, such as autonomous
driving [20], causal inference with position information [21] and visual question
answering [18].

Furthermore, in this work, we seek to analyze the position encoding mech-
anism by utilizing a simple but controlled dataset and surgically modify the
model backbone to focus our discussion. The primary empirical results shown
in Tabs. 1 and 2 and the visualization in Fig. 1 not only reveal the mechanisms
of position encoding in dynamics prediction models but also contribute to the
broader goal of analyzing the explainability of DNNs. By revealing how differ-
ent input types and network configurations affect the model’s ability to encode
spatial information under a controlled environment, we gain insights into the
internal representations formed by these networks. This approach demonstrates
how targeted modifications and analyses can unpack the complex information
processing occurring within DNNs, and we hope our work can encourage future
explainable AI researchers to also conduct simple, controllable, and targeted
analysis, in addition to the studies on the complex dataset that involves many
sophisticated uncertainties.

4 Conclusion

In this work, utilizing RPCIN and billiard games as a probe, we comprehen-
sively investigate the process of position information encoding for vision-based
dynamics prediction, where only object abstracts, i.e., bounding-boxes, are in-
directly utilized while the environment stays unchanged. The empirical results
reveal that the inconsistency in the distribution of output features is the key to
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empowering the model to encode the position information. Such inconsistency
can be brought up by either the proper padding setting within CNN kernels or
the divergence that existed in the original inputs. In addition, our experiments
further show that when the environment context varies, merely incorporating
object abstracts is insufficient for correct dynamics prediction, where the model
performance is jeopardized when the environment context becomes complex.
The findings of this study not only contribute to the field of vision-based dy-
namics prediction but also offer insights into the explainability of AI systems.
By elucidating how neural networks encode and utilize position information, this
work contributes to the foundation for developing more adaptable and versatile
DNNs. The observed limitations in handling varying environment contexts high-
light areas where future research could focus on enhancing the robustness and
generalizability of models, and ultimately expanding their applicability across
diverse domains and tasks.
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