
Causal Interpretation of Sparse Autoencoder Features in Vision

Sangyu Han Yearim Kim Nojun Kwak
Seoul National University, Seoul, Korea

{acoexist96, yerim1656, nojunk}@snu.ac.kr

Abstract

Understanding what sparse auto-encoder (SAE) features in
vision transformers truly represent is usually done by in-
specting the patches where a feature’s activation is highest.
However, self-attention mixes information across the en-
tire image, so an activated patch often co-occurs with—but
does not cause—the feature’s firing. Consequently, inter-
pretations based solely on top-activation patches can be
misleading. We therefore propose Causal Feature Expla-
nation (CaFE), which levarages Effective Receptive Field
(ERF). We consider each activation of an SAE feature to
be a target and apply input-attribution methods to iden-
tify the image patches that causally drive that activation.
Across CLIP-ViT features, ERF maps frequently diverge
from naive activation maps, revealing hidden context de-
pendencies (e.g., a “roaring face” feature that requires the
co-occurrence of eyes and nose, rather than merely an open
mouth).. Patch insertion tests confirm that our CaFE more
effectively recovers or suppresses feature activations than
activation-ranked patches. Our results show that CaFE
yields more faithful and semantically precise explanations
of vision-SAE features, highlighting the risk of misinterpre-
tation when relying solely on activation location.

1. Introduction
Interpretable machine learning seeks to map deep model
representations to human-understandable concepts. In vi-
sion, sparse autoencoders (SAEs) have emerged as a com-
pelling approach to distill concise basis features from high-
dimensional transformer latents by imposing sparsity con-
straints [4]. These SAE features ideally capture distinct vi-
sual patterns and have been widely used to reveal semantic
structure in complex models.

To assign semantic labels to these SAE features, prior
works have proposed several methodologies. One line of
work retrieves the top-activated samples and derives feature
labels from those images [7, 11]. Another approach further
pinpoints high-activation tokens within those samples for
fine-grained annotation [9]. More recently, PatchSAE com-
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Figure 1. Interpretation of CLIP (ViT-L/14) sae features at layer
22. While most SAE feature activations are localized aligned with
its meaning (Top), we found some of SAE feature activations
scattered across the image, halting the explanation of SAE fea-
tures (Bottom).

bines both sample- and patch-level analyses, though it still
primarily relies on top-activated images for interpretation
[5]. All these approaches presuppose that features are spa-
tially localized and semantically coherent.

However, as shown in Fig. 1, we find that there ex-
ists some non-localized sparse autoencoder (SAE) features
: their highest-activation patches scatter across the image.
For these non-localized features, neither reviewing top-
activated images nor marking their activated patches yields
a coherent interpretation, since the visible activation peaks
represent correlational, not necessarily causal, evidence.

To interpret non-localized SAE features faithfully, we
propose examining each activated token’s effective recep-
tive field (ERF) [3]: the set of input patches that causally
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Figure 2. Method overview. The feature ‘Despair’ highly activated at the patch at background. Using attribution method, we can find which
part of image causally contribute to the feature. We call this effective region of interest as Effective Receptive Field.

drive the token’s activation.
In this paper, we introduce Causal Feature Explana-

tion (CaFE), which integrates: (1) SAE feature extraction
on transformer latents, and (2) patch-level input attribution
(e.g., Integrated Gradients or AttnLRP). For each feature,
we compute attribution scores over all patches and iden-
tify those with highest causal contribution, forming the fea-
ture’s ERF. By revealing the causal drivers of feature activa-
tions, CaFE enables more trustworthy and accurate interpre-
tations of vision models, avoiding misleading correlations
and deepening our understanding of complex architectures.

2. Related works
Individual units within convolutional neural networks
(CNN) and transformer architectures are often polyseman-
tic, entangling several concepts and thereby hampering in-
terpretation. Sparse autoencoders (SAEs) address this lim-
itation by learning an overcomplete, l1-regularized basis in
which each latent dimension activates for a single concept.
Originally applied to language models, SAEs have seen
adapted to vision transformers, where they capture object
parts and textures from patch embeddings [5]. Most existing
explanation methods simply visualize top-activating images
or tokens [9, 11]; these works are effective only when fea-
tures are spatially localized and may fail when confronted
with the non-localized features we observe.

3. Method
3.1. Preliminaries: SAE Features
Given a hidden representation h ∈ Rn from a backbone
(e.g. patch embeddings of a ViT), we learn a SAE

z = ReLU(We(h− bd)), ĥ = Wdz− bh,

with the number of features m ≫ n, where We ∈ Rm×d is
the SAE encoder weight matrix, Wd ∈ Rd×m is the decoder

weight matrix, and bd,bh are learned bias vectors. Training
minimizes

L =
∥∥h− ĥ

∥∥2
2
+ λ∥z∥1,

so that each latent dimension zk activates only for patches
exhibiting a specific visual concept. The k-th row of We

therefore serves as an interpretable feature detector, often
corresponding to an object part, texture, or scene element.

3.2. Causal Feature Explanation (CaFE)
From activations to causes. SAE features are usually in-
spected by ranking the patches whose activations zk(I) ∈ R
are highest, where I denote the input image. While this
works well for localized features, Fig. 1 shows that non-
localized features appear in disparate regions, offering only
correlational hints. This limitation motivates us to ask not
merely where zk fires, but which image evidence truly drives
the activation.

Effective Receptive Field (ERF). Let A(p | zk, I) de-
note the attribution of input patch p to the scalar output
zk(I). The effective receptive field of feature k on I is the
score map

ERFk(I) =
{(

p,A(p | zk, I)
)
: p ∈ I

}
, (1)

whose intensity measures how much p caused to form zk.
High-score regions are the real evidence behind the activa-
tion, independent of where the network reports the maxi-
mum. Fig. 2 illustrates that although the token in the back-
ground floor attains the highest activation for the “Despair”
feature, the ERF pinpoints the spilled-pill region as the
causal driver.

As shown in Fig. 2, the attribution A is obtanined by
backpropagating relevance scores from the target SAE neu-
ron through the SAE encoder and subsequently through
the vision transformer. Inside transformer layers, we em-
ploy Attention-LRP (AttnLRP) [1], an adaptation of
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Figure 3. Causality validation. We compare causality of our CaFE method with baseline (naive activation-based patch ranking). We also
compare various attribution methods including KernelSHAP, Attention-LRP, Integrated Gradients, and Gradients. It shows that our CaFE
method with AttnLRP surpassed other attribution methods.

Layer-wise Relevance Propagation that distributes rele-
vance properly considering attention edges. For compari-
son, we also report Integrated Gradients (IG) [10], Ker-
nelSHAP [6], and Gradients as baselines. These methods
produce the same ERF interface, allowing plug-and-play re-
placements.

By replacing naive activation maps with ERF attribution,
our Causal Feature Explanation (CaFE) pipeline delivers
faithful explanations for both localized and non-localized
SAE features, laying the foundation for the analyses in the
following sections.

4. Experiments
We conduct a series of experiments to (i) assess the fidelity
with which CaFE identifies the causal image evidence be-
hind SAE activations and (ii) characterize when and where
non-local SAE features arise in a vision transformer.

Experimental Setup. All experiments are conducted
with the CLIP–ViT-L/14 encoder [2]. For each transformer
layer, we train a Matryoshka SAE [11] on 5× 108 im-
age patches extracted from the ImageNet-1K training set.
Following the prior works, the reconstruction and sparsity
hyper-parameters are held fixed across layers.

4.1. Quantitative Causality Evaluation
To quantitatively validate that our Causal Feature Explana-
tion (CaFE) framework accurately identifies the true causal
regions, we perform insertion tests, an established evalua-
tion protocol in the explainability evaluations [1, 3, 8]. In
an insertion test, we start with a blank image and gradually
insert patches from the original image in order of their im-
portance, measuring how quickly the feature activation is
recovered. For completeness, we also considered deletion
tests; however, across all methods, removing the patches at
the method’s own selected locations immediately drives the
feature activation zk to zero, so we omit deletion results.

We then apply these insertion tests to compare the efficacy
of attribution-based importance maps with that of the naive
activation-based patch ranking. If our method with ERF
truly pinpoints the true causal patches, then inserting solely
those patches into a blank canvas should yield a higher zk
activation than inserting the patches selected purely on the
basis of their activation magnitudes. We perform these tests
over a set of images and features, computing metrics like
the area under the insertion curve (AUC) as a summary of
explanation efficacy. We compared several CaFE methods
with different attribution with baseline approach. Fig. 3
confirms that ERF-guided insertion highly outperformed
the causal recovery rate of the activation baseline across the
layers. Between CaFE methods, AttnLRP surpassed other
attribution methods - which is known as the most faithful
attribution method for the transformer architecture. Impor-
tantly, even for traditional “local” features ERF still gives
a modest boost, indicating that attribution sharpens patch
selection beyond raw activation.

4.2. Qualitative Analysis of Non-local Features
ERF maps of non-local features frequently diverge from the
naive activation map, uncovering hidden context dependen-
cies. Bottom right of Fig. 2 shows the examples of non-
local SAE features with their corresponding ERF. The “De-
spair” feature fires only when spilled pills co-occur with a
frowning face, even though its maximal activation patch is
far from the pills. Such phenomena remain imperceptible
when one relies solely on activation-based inspection.

Moreover, for each layer, we manually reviewed the first
100 SAE features and flagged those whose top-activation
patches were spatially inconsistent with their correspond-
ing ERF. The results depicted in Fig. 5 show a clear
trend. Firstly, non-local features are scarce in early layers
(<layer 9). All such cases are class-token features whose
activations reside exclusively at the CLS position. Secondly,
their frequency rises sharply in higher layers, peaking at
layer 22 where ≈14% of features are non-local. These fea-
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Figure 4. Qualitative examples of non-local SAE features and their ERFs at the points of highest activation across different layers. Even
when the feature is spatially displaced from the region that encodes its meaning, its ERF still correctly pinpoints the area that triggered
the activation. In lower layers (right-most column), the non-local SAE feature appears only when its semantic meaning is linked to class
tokens.
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Figure 5. The number of non-local SAE features across layers. The
non-local SAE features become rarer as layer number decreases.
We manually inspected the number of non-local features out of the
first 100 features.

tures encode highly abstract, often compositional concepts
(e.g. “knight in armour”, “three”).

This distribution supports the intuition that self-attention
progressively mixes global context, making later-layer acti-
vations increasingly difficult to interpret without ERF.

4.3. Discussion

Limitations and open questions. Computing the ERF
for each feature requires both forward and backward passes,
which may be costly for large SAEs. Furthermore, manual
annotation of non-local features is inherently subjective; de-

vising scalable, automated criteria remains future work. Fi-
nally, while we focus on vision transformers, analogous pat-
terns of context mixing arise in large-scale language mod-
els; extending our CaFE with ERF-based attribution to text
modalities is also a compelling avenue for further explo-
ration.

5. Conclusion

We presented the Causal Feature Explanation (CaFE)
framework for interpreting vision model features by lever-
aging effective receptive field attribution, and empircally
demonstrated its superiority to the conventional practice
of relying on top activations. Our study reveals that many
sparse autoencoder features in vision transformers cannot
be adequately understood by looking only at where they ac-
tivate; one must also consider why they activate. By apply-
ing input attribution to each feature, we obtain causal expla-
nations that often differ from correlational activation maps
– shedding light on context dependencies and complex con-
cepts encoded by the model. The main contribution of our
work is to show that causal, ERF-based explanations pro-
vide a more faithful and semantically precise interpretation
of visual features than activation-based methods. This is a
crucial diagnostic insight for vision model interpretability:
it prevents us from mislabeling features or overlooking the
true factors influencing model representations.
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