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Abstract. Concept-based XAI (C-XAI) approaches to explaining neural
vision models are a promising field of research, since explanations that
refer to concepts (i.e., semantically meaningful parts in an image) are
intuitive to understand and go beyond saliency-based techniques that
only reveal relevant regions. Given the remarkable progress in this field
in recent years, it is time for the community to take a critical look
at the advances and trends. Consequently, this paper reviews C-XAI
methods to identify interesting and underexplored areas and proposes
future research directions. To this end, we consider three main directions:
the choice of concepts to explain, the choice of concept representation, and
how we can control concepts. For the latter, we propose techniques and
draw inspiration from the field of knowledge representation and learning,
showing how this could enrich future C-XAI research.

Keywords: Concept-Based Explainable AI · Concept Embedding Anal-
ysis · Concept Control · Neuro-Symbolic AI · Knowledge Representation

1 Introduction

As the capabilities of deep learning models grow and as our society uses them
more, it becomes increasingly important to understand how they work [105]
and how to control them in effective ways [37]: Understanding how a model
works is the basis for trusting the model [53] and for its verification against
ethical, privacy, or safety requirements [31]. Control is imperative to effectively
enforce requirements by design, during maintenance, or through manual ad-hoc
intervention. Understanding and control have formed the basis for a wealth
of explainable artificial intelligence (XAI) methods for computer vision (CV)
[22,113,131].

In XAI for CV, early post-hoc explainability approaches have focused on
areas of importance of features in the input image relevant for a vision model’s
* Author names are in alphabetic order.
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Fig. 1: Overview of envisaged methodology for model understanding and control.
Using rich and relational concept annotations (e.g., grounded in an ontology) of visual
model inputs, intuitive concepts and relations are associated with global, expressive,
and semantically faithful concept representations in the model’s latent space (e.g.,
distributions). This allows interactive knowledge verification and local or global control,
e.g., adjusting the concept representation to globally separate the concept boiler from
the concept chimney.

decision [6,67]. However, these approaches do not explain what happens internally
in the model. Concept-based XAI (C-XAI) [59,94,112] overcomes this shortcoming
by explaining how a vision model represents input in its intermediate layers using
semantically meaningful concepts that can be understood by users. Finding
concept-based descriptions of internal representations is needed to gain more
insight into the internal information processing of the model [99], since concepts
can act as a Rosetta Stone, i.e., as a common alphabet between users and the
model. Such concepts can be task-related objects (e.g., head, beak) or scene
properties (e.g., red, sunny), and are not necessarily part of the output labels.

Goal and contributions. Our overall aim is to give XAI researchers a good
starting point to dive into the subtopic of C-XAI and a guide to interesting
next steps to advance the field further. Previous C-XAI surveys [59,94,99,112]
have focused mainly on motivating and introducing C-XAI methods, focusing
less on discussing the future of C-XAI research. In this paper, in addition to
reviewing the state of the art in C-XAI, our objective is to draw attention
to important challenges of C-XAI, which are largely neglected in the literature.
We discuss the state of the art and open challenges in extracting new
concept types, devising concept representations that go beyond the initial
vector-based approach, and applying concept control mechanisms, where each
3challenge (a trophy icon followed by bold text) is accompanied by �proposals
(a light bulb icon followed by italicized text) on how to tackle it.

Our particular position in this paper is that C-XAI can benefit from the
established field of knowledge representation and reasoning (KR) [15,46]. This
includes verifying and controlling the ontological commitment [16] of a vision
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model, that is, whether it has learned the right concepts and their relations to
each other. Answering these questions empowers the pipeline in Fig. 1.

Scope. We will only briefly touch on the mature C-XAI directions for investi-
gating concept relevance scores [41, 42, 56, 93, 127], and leave aside the promising
applications of combination with feature importance methods [3, 83], and guid-
ance for creating counterfactual explanations [82]. Similarly, with regard to
challenges, we do not discuss in detail the already well-known issues of concept
completeness [18, 108, 127], concept leakage [47, 49, 55, 73, 75, 76], lack of causality
of concepts (fluffy & ear not necessarily implies the composite fluffy ear) [70], as
well as cost and availability of concept labels [14,85]. Instead, we identify and
highlight the so far underexplored directions for potential advancements. Also,
there is the question of how to evaluate the quality of C-XAI methods [29], which
goes along with the general issues in XAI to define meaningful functionally-,
human- and application-grounded metrics [25,64,113] and is not considered here.

In the next section, we will give a compact review of C-XAI and relevant
background (Sec. 2), and then present our results on open challenges along the
dimensions of concept type (Sec. 3), representation (Sec. 4), and control (Sec. 5).

2 Background on C-XAI for Computer Vision

Concept-based explainable AI seeks to enhance the interpretability of AI models
by connecting their internal representations with human-understandable concepts.
The definition of the concept used here varies across the literature.

2.1 What is a concept?

Poeta et al. [94] define concepts as “human-interpretable high-level features of
the input data that are important for the model’s decision-making process”. This
definition highlights the connection to features as used in feature importance
methods. In semantic contexts, a concept is generally a notion that can be
described using natural language [112], for example, a synonym set in the lexical
database WordNet [4] (e.g., ear, fluffy) or a combination thereof (e.g., fluffy ear).
This definition focuses on close alignment with human language and is the most
commonly used definition in C-XAI [12,35,56]. We use this as the default notion
in this paper. Extending this to image analysis, a concept can be considered as a
meaningful region within an image [35,39,112]. So far, concepts considered are
only vaguely interrelated and do not capture the rich structure of an ontological
language that allows to define complex concepts from a set of basic ones.

In symbolic AI literature, particularly within KR, concepts are viewed as
what can modeled as logic predicates, characterized by their relations to other
concepts [8, 44]. This structural approach emphasizes the logical relationships
and hierarchy among concepts but is underexplored in C-XAI [114].
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2.2 An Overview of C-XAI Directions for CV

In this section, we briefly review the state-of-the-art of C-XAI methods, to set
the scene for later discussion (see Fig. 4 in Appendix A.1 for a taxonomy). For
further details, the reader is referred to more elaborate surveys [59,94,99,112].

C-XAI aims to associate the mentioned human-understandable concepts
with a representation allocated in a neural model’s latent space(s), i.e., the
intermediate output space of the model. We use the terms concept representation,
or equivalently, concept embeddings, as a collective notion to encompass the
variety of existing methods to represent concepts. In order to be understandable,
a model must operate using the same conceptual “alphabet” as humans. Ideally,
black-box models should also internally represent and use concepts that match
those from the catalog of human cognition.

Concept representations can be post-hoc extracted (i.e., after training a
model) or ante-hoc enforced (i.e., explainable by design) [59, 94, 99, 112]. We
can also categorize C-XAI into supervised and unsupervised methods [112]:
Supervised methods utilize pre-defined concept specifications, such as labeled
concept examples, to check whether a neural model encodes information about a
concept in question. Unsupervised methods instead aim to identify what concepts
a model has learned; considerations here are what qualifies a representation as
that of a concept, typically cluster centers [39,132] or linear basis directions [132]
(cf. Fig. 2); and how to ensure human interpretability of the found concepts,
e.g., by constraining found concepts to be connected image regions [39]. In the
following, we review existing variants for concept representation and discuss
supervised and unsupervised C-XAI methods in detail.

Concept Representation Variants. A concept representation consists of two
parts: the representation of the human-interpretable part (usually via examples
[13], in vision-language models also via text [65,91]) and the associated latent
representation, which is typically given by the parameters of the function that
associates a concept with its latent representation. For example, TCAV [56] defines
a concept via images with binary classification labels, and the association function
as a binary classifier of latent vectors. In its simplest form, a concept is associated
with a single unit of the network (neuron [57] or filter [12] in a given layer). A more
general perspective represents concepts by weight vectors with one weight per
network unit of interest, taking the role of directions or centroids in latent space
(see Fig. 2). Such techniques were shown to capture better the distributed way [21]
of how information is stored in a model and were established in TCAV [56] and
Net2Vec [35]. Since then, more complex representations include clusters [39,96],
and kernel functions [20]. It should be noted that nonlinear association functions
are also investigated, such as generalized linear models [5, 74], or normalizing
flows [30, 102]. However, this sacrifices the interpretability of the association [56].
The selection of the association function is task-specific, focusing on aspects such
as the concept type [112] like spatial localization (e.g., image classification [56],
segmentation [35]), and concept values (e.g., binary [56], regression [42], multi-
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Fig. 2: Illustration of Net2Vec [35] for associating a concept with a linear separator
with weight vector wc in (activation pixel) latent space (left), and illustration of typical
concept representation variants (center: direction-based, right: cluster-based).

class [54]); and constraints on the involved latent representations like being non-
negative [132], unit vectors [12] or even a complete orthogonal basis [18, 57,128].

Following an initial [56] and still prevalent [41,42,93,127] application of C-XAI,
some authors also demand as part of the concept representation an importance
score [96]. This score tells how much the concept participates in the model’s
decision process [95,96], which is similar to feature importance [10].

Supervised Concept Analysis. Supervised concept embedding analysis meth-
ods associate predefined concepts with the units of the neural model. First
approaches matched concept segmentations to the most similarly activated con-
volutional neural network (CNN) filters [12]. Fong et al. in Net2Vec [35] and Kim
et al. in TCAV [56] soon after trained linear models, for concept segmentation
and concept classification respectively, to separate concept from non-concept4
activations, with their weight vector serving as concept embedding vector. This
is up to now the basis for essentially all post-hoc supervised techniques: Their
linear models were extended to linear regression [42,43], kernel-based methods
producing region-based concepts [20], and from global to image-local explanations
by training on concept data subsets [81,130].

By contrast, ante-hoc (or explainable-by-design) approaches typically use the
simple representation again and associate single units in a layer with concepts.
They were first introduced as concept bottleneck models (CBMs) [57,69]. This was
later improved by denoising techniques to model concept interdependencies [11,47],
semisupervised training strategies for label efficiency [14, 85], concept hierarchies
[77], binary [47] and multidimensional [29] concept representations; and combined
with unsupervised methods [108] to overcome the well-known challenge of choosing
a complete set of concepts, that is, one sufficient for the task [18, 108, 127].
Furthermore, CBMs are criticized for concept-leakage [49, 55, 73, 75, 76]: The
vector produced by all concept neurons may learn to encode not only information
about the given concepts but also “leak” other information to achieve higher
accuracy.
4 also called background activation
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Unsupervised Concept Analysis. Unsupervised concept analysis methods
identify the most important concepts in the feature space without labeling
information. They achieve concept completeness by design, but at the cost of
possibly uninterpretable concept formations. The manual labeling effort for
assigning labels to the found concepts is still necessary to finally establish the
concept association. Techniques to identify prevalent features include standard
clustering of activations obtained from a probing dataset, as first done for image-
level concepts [38, 39]; and via (multi-layer) activation pixel clustering for image-
region concepts [95, 96]. This was shown to be subsumed by matrix factorization
techniques such as k-means clustering, classical PCA, or non-negative matrix
factorization [33,34,60,119,132],

There also exist ante-hoc methods that, similar to CBMs, have a bottleneck
layer. Instead of assigning one neuron per concept, they learn to encode concepts
as prototype vectors. Comparing these with the intermediate representations pro-
duces the concept scores. This case-based reasoning approach was first introduced
in ProtoPNet [17, 63] and continued in its successors on object detection [32],
with prototype sharing across output classes [104], and with preferable cosine
similarity instead of L2 distance for prototype comparison [122].

2.3 Ontological Commitment in Knowledge Representations

We will here show how the notion of ontological commitment from the field of
knowledge representations naturally translates to C-XAI requirements, which
are further elaborated later. For everyday concepts, humans typically have an
understanding of a concept based on what other concepts are related and via which
relations. To connect this to neural models, note that also the model’s internals
are supposed to be a (learned) knowledge representation. Thus, both concepts and
their relations induce constraints on valid model (intermediate) predictions [114].
For example, consider object existence constraints from object-to-part relations
[40,114]: since the head is part of a person, the presence of a head should imply
the presence of a person. Similarly for hierarchical class subsumption [103]: since
a human is a movable object, the detection of a person implies it may be movable.
Aside from these constraints, we also expect explanations to be more intuitive
for humans to understand if they use humans’ cognitive catalog of concepts and
relations (also known as cognitive chunks [25]). Therefore, an implicit requirement
for concept representations is that they support reasoning with concepts and
capture human prior knowledge about the task. The respective kind of reasoning is
determined by the so-called ontological commitment [23]. Ontological commitment
refers to the catalog of defined concepts (1-ary logic predicates) as well as relations
(binary, possibly n-ary predicates), for example, IsSimilarTo, IsSubclassOf,
IsPartOf, IsCloseTo. The term commitment signals the choice of admissible
concepts, and significantly influences what kinds of inferences are possible or easy.
For example, if dog and cat are organized as subconcepts of concept pet, then their
co-occurrence with humans is easier to predict than choosing a zoology-motivated
taxonomy (cf. Fig. 3b).
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3 Types of Concepts

At the heart of the problem definition in C-XAI lies the questions of what
concepts to extract and where to extract them from. In the visual domain,
multiple concept types have already been considered [112]: image-level scene
attributes (e.g., sunny) [12] and image qualities (e.g., contrast) [1]; as well as
attributes of image regions such as object (e.g., person) and object part classes
(e.g., beak) [12, 57], and object attributes such as material, texture [56], and
color [109].

Apart from a few exceptions [77], the concepts are based on layered neural
networks or spatial alignment in unimodal CNNs. Hence, post-hoc C-XAI has
in CV so far been applied to classifiers [35,56], regression [43], object detectors
[80,111], and only recently for the first time to video models [52,106]; applications
to language models [133], generative adversarial networks [13], and quite recently
to diffusion models [36, 51] suggest that more architectures could be covered. An
example is the Vision Transformer (ViT), which has recently become a popular
CV architecture. Its self-attention mechanism, however, is difficult to interpret.
Rigotti et al. [101] propose the Concept-Transformer, which extends attention
from low-level features to high-level concepts, providing plausible and faithful
explanations.

Open Challenges

C-XAI Research so far seems to be limited to the mentioned static attributes of
images and image regions that are extracted from CNNs. This neglects concepts
arising from temporal or other sensory features, as well as other architectures such
as ViTs [26]. Since they could take important roles in future critical applications,
we argue that more research is needed on concept extraction in these fields.

Temporal and Multimodal Concepts. What remains largely unexplored is
3the identification of concepts for temporal and other sensory features, despite
being of interest for many important robotic applications like automated driving.
These have an inherent temporal and multisensory resolution, which is inevitable
for reliable prediction of trajectories, e.g., to differentiate advertisements on
trucks from true pedestrians. Meanwhile, research of C-XAI in videos is very
sparse, with the first TCAV-based work still concentrating on objects instead of
movement patterns as concepts [52,106]. Similarly, the investigation of C-XAI
in multimodal models has just started, but with a focus on vision-language
models to utilize the language input for concept definition [65,91]. �Since it is
possible to disentangle multi-model representations into single-modal ones [72],
this might be an attack point for the transferral of C-XAI techniques to multimodal
non-language models. Generally, it would be interesting to see how and what
concepts are represented in video and/or multimodal models, in order to enable
in-depth debugging. Furthermore, 3the so-far unused temporal resolution in
spatio-temporal concepts might open up new ways of self-supervised concept
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extraction. It is well known that motion cues such as optical flow arising from
temporal consistency in real-world videos are valuable information for object
segmentation [124,126]. This has, to our knowledge, not yet been used to analyze
trained latent representations of video processing models. �Latent representations
that occur in spatio-temporal regions with stable optical flow, such as on a moving
object, might be interpreted as learned object properties. That would, for example,
allow self-supervised part-object extraction, to validate whether force exertion
(e.g., locomotive tugging tender Fig. 1, swarm-like behavior), connectedness (e.g.,
arms typically do not detach), or even shadows on 3D objects are adequately
modeled.

Concepts in New Architectures. As reviewed above, it is not yet clear 3how
to associate concepts in new architectures. ViTs, for example, break with the
direct association of neurons with spatial locations in the input. This, however,
is utilized in nearly all C-XAI methods for extraction of subimage concepts: A
concept in a spatial position must be reflected in the activation spatially aligned
to that position, as already done in the base C-XAI methods [32, 35, 69, 132]. An
alternative would be to use full-layer concept vectors, and during inference allocate
them to individual image input regions by feature importance techniques, as done
in [71] but with mediocre success. �A combination that leverages the coarse patch-
wise processing of vision transformers together with feature attribution methods
may be a promising direction. Stassin et al. [116] discuss adapting existing XAI
techniques to Transformers by converting embeddings into pseudo-activation
maps, with a particular interest in applying this approach to the MLP layers
Another approach is �training a sparse autoencoder on the activations of a layer,
which is so far used in understanding large language models [50] and could be
transferred to the vision domain. Similarly to ViTs, explaining diffusion models
for image generation has only just sparked interest, both ante-hoc [51] as well as
post-hoc [36, 92], although diffusion models are already being used in turn for
concept discovery [118]. That could be an entry point for the diffusion model
analysis. In summary, we see many opportunities to advance our understanding
of novel model types via C-XAI.

4 Concept Representation

Concept representation encompasses two directions: How a specific concept is
represented and which concepts are represented.

4.1 Basic Types of Concept Representations.

Using single neurons (i.e., unit vectors in latent space) as concepts [57] makes it
easy to quantify concept attribution via neurons’ activation magnitude. However,
this can be overly simplistic [78] because it overlooks the distributed nature of
neural network representations [21,35,56]. Standard now are vector-based concept
representations that hold weights for each neuron [39,56] or filter [35, 81, 132] of
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Fig. 3: Illustration of the ontological commitment (Fig. 3b, right), and complex concept
distribution (Fig. 3a, left) in actual vision model’s latent spaces.

one or several [96] layers. They require optimization but provide more accurate
concept embeddings [35,56]. So far, only a few exceptions generalize this from
global point estimates to (nonlinear) subspaces [30], latent space regions [20],
or hierarchies of (local or global) point estimates [77, 81, 120]. In the following
subsection, we will argue the immediate shortcomings of the currently prevalent
vector-based representations.

4.2 Ontological Commitment of Concept Representations.

The available background commonsense knowledge regarding concept definitions
(e.g., HasPart(head,person)) is essential for pinning down semantics. Manually
crafted, large ontologies often aim to capture the ontological commitment of
human common sense. Notable examples are WordNet [4], Cyc [62], SUMO [84],
or ConceptNet [115]. To connect these sources of information to C-XAI one has
to ground ontology concepts in network activation. As a first step, individual
concepts are grounded in network activation, but it is desirable to extend this
approach to capture more expressive ontological languages, e.g., [88]. With respect
to grounding individual concepts, recall that, e.g., in TCAV [56] and Net2Vec [35]
the cosine similarity was used as a measurement for semantic similarity of latent
concept representations, and vector addition as semantic combination of concepts
(a kind of logical AND). This can now be considered as relations in the ontological
language of their chosen vector-based concept representation. Probing what
concept representation is a combination of others (e.g., wood + green ≈ tree [35])
or is similar to others (e.g., brown hair ∼ black hair [56]) extracts the constraints
and hence the ontological commitment of what the model has learned. This
commitment, however, does not necessarily coincide with human intuition but
can encode unwanted biases like apron ∼ female. Therefore, the important goal
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of C-XAI to uncover faulty learned knowledge reformulates as to verify, validate,
and control the ontological commitment and conceptualization of vision models.

Unfortunately, little investigation has been devoted so far to the ontological
commitment of types of concept representations. Vanilla (point-estimate) vector
embeddings allow measurement of semantic similarity via cosine distance [35] but
are criticized for their inability to model richer concept relations [45,123]. Spatial
calculi [110] become applicable to concept segmentations for modeling object-
part-relations on image regions [114] or region-based concept representations
(instead of point estimates) to model subsumption relations [81,120] (extractable
via hierarchical clustering, cf. Figs. 3b, 3a). Donadello et al. [24] showed that
neural networks are also capable of learning more complex relations. This is in
accordance with the findings that deep neural networks employ simple reasoning
steps on concepts across several layers, the subnetworks encoding these also called
circuits [86].

Open Challenges

We will now first argue, why the prevalent vector-based representations fall short
of capturing some basic interesting information about concepts. This is then
extended to the perspective of ontological commitment, where proposals are
made to find richer relations between concept representations for better model
validation and verification.

Questioning Point Estimates as Concept Representations. A challenge
posed by the prevalent vector-based approaches is their two inherent assump-
tions that we will question in the following: (i) Concepts can meaningfully be
approximated by linear trajectories in latent space pointing from less concept to
more concept [56,90], and (ii) this direction can be expressed by a point estimate.

3Linear point estimated representations are too simplistic, concepts should
be modeled by regions or distributions. This can be argued from two perspectives.
For one, while point estimates might be sufficient for small models and datasets
with few clearly distinct concepts [57], Mikriukov et al. [80] showed that this can
break down at scale, as illustrated in Fig. 3a: Concepts in larger object detectors
are smeared over the latent space at different densities, start overlapping, and
even break down into distinct subconcepts. Such relevant information cannot
be captured by point estimates. Instead, region-based [20, 89, 95] or density-
based [81] approaches can capture spread (or even density and thus outliers),
non-connectedness (i.e., sub-concepts), and overlap (i.e., concept confusion or
concept commonalities) of concepts in the model’s latent spaces. �Future research
could involve generalizing local C-XAI approaches [81, 130], fitting Gaussian
mixture models to sets of such local concept vectors and investigating factors
that influence concept spread. Furthermore, �the region-based approach poses
an interesting direction. For example, representing concepts as cones could be
promising, as they naturally come with negation, intersection (AND) and union
(OR) on concepts [61,88], as picked up again below.
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As a second argument, we would like to draw attention to 3modeling the
rate of change: So far, C-XAI-based approaches only considered the general
direction towards more concept regions but not the rate of change when traversing
the trajectory. It might, however, be interesting information whether the model
assumes a rapid change (turning point) like one would expect for glasses versus
broken glasses; a somewhat smooth transition, like non-smiling to smiling [30]; or a
truly linear change of an object’s representation in latent space when continuously
modifying rotation or color. And lastly, it is not taken for granted that local
approximation by a trajectory with 1D curvature (i.e., a straight line) is strong
enough to capture all concept information of interest. Several approaches now
discard this assumption by using the highly non-straight trajectories of traversing
concepts in generative model latent spaces [30,118]. Validating and addressing
the linearity assumption is essential for developing more flexible, potentially
non-linear concept representations that accurately capture the complexities of
real-world data.

Richer Ontological Commitment of Concept Representations. So far,
C-XAI research has mostly focused on the ability of a model to grasp a concept
as intended. Unfortunately, little work beyond this is devoted to 3systematic
investigation of the ontological commitment in trained models, in particular
the relations that they can model. In the context of knowledge embeddings, on
the other hand, there exist principled embedding approaches that capture rich
concept relations, including subsumption [45,87,123], or negation [88].

In consideration of models that exhibit reasoning capabilities, further require-
ments may arise. This has already been shown for the usual approach of geometric
containment in latent space to represent concept subsumption, i.e., points inside
a region represent the instances of some concept. In order to allow reasoning,
concept regions cannot be arbitrarily shaped [61]. Put differently, the geometry of
concepts and their relations in latent space is tightly coupled with the reasoning
capabilities that can be achieved. Little of geometry-reasoning interdependency
has been revealed so far. A promising direction to solve this issue is to �investigate
whether vision models use some of the known principled embedding approaches
such as from spatial reasoning [28, 46, 88] and how to extend existing C-XAI
approaches to extract these.

Another open challenge is to 3develop tools for verification of a model’s
ontological commitments. Options for achieving this are to (a) find accurate
representations of known relations in the model, or (b) verify a given relation
function commitment (like the cosine similarity) against expected behavior. An
approach to the first challenge could be �considering so-called reification of
relations [87], an idea from knowledge graph embeddings that flexibly represents
relations themselves as concepts. For the second challenge, �both the rich common
sense ontologies should be taken into account, complemented by densely labeled
visual datasets labeling both concepts and local relations, similar to scene graph
datasets [58]. Note that this might require considerable efforts in the community
to �define task-specific sub-ontologies, and to develop more specialized and con-
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trollable datasets and testing environments, such as 3D-generated scenes with
automatic annotations [97, 98] or generative AI-produced data. Apart from that,
understanding what relations a deep neural network of given depth can accurately
model, and investigating whether it does model the relations of interest, are an
important step for fully understanding the automatic reasoning applied by the
model.

5 Concept Control

Concept-based explanations not only allow us to understand a model, but also
provide us with means to change the model to achieve a specific objective, e.g.,
improving the generalizability of the model. Among several ways of changing a
model (e.g., improving the quality of the training set, choosing a better model
architecture, or directly modifying the intermediate representations of an input),
we see high potential in targeted modification of the intermediate representations
of model inputs, which we refer to as concept control or concept intervention.

5.1 Modification of Latent Representations

In the C-XAI literature, concepts are often represented as vectors in an embedding
space [2, 56, 85, 129]. Given a set of concepts C = {c1, . . . , cn}, we can regard
the corresponding concept vectors wc1 , . . . , wcn ∈ Rd as a generating set or, by
abusing the language, a basis of interpretable linear subspace of the embedding
space Rd. The ith coordinate of a representation with respect to that concept
basis captures the strength of the presence of concept ci in the representation.
This allows us to intervene on a concept ci in an intuitive way: increasing (or
decreasing) the ith coordinate leads to increasing (or decreasing) the presence of
concept ci in the representation. Koh et al. [57] were to our knowledge the first
to apply a concept intervention. This was done on the CBM architecture, where
a complete layer is trained such that each single neuron, which corresponds to
a unit vector in the embedding space, is associated with a given concept in an
ante-hoc supervised manner. An issue here is the need for ground-truth concept
labels, which are often unavailable.

Several approaches circumvent the above issue by interpreting the concept
vectors in a post-hoc manner. Abid et al. [2] and Yuksekgonul et al. [129] use the
CAVs of a pre-trained vision model as a concept basis and identify concepts that
need to be added (or strengthened) or removed (or suppressed). To apply local
interventions, Abid et al. learn counterfactual explanations, that is, identifying
the concepts that should have been added or removed so that the model predicts
the correct label. In contrast to that, the post-hoc CBM approach [129] intervenes
globally by removing a spurious concept to predict a class, e.g., removing the
concept dog to predict the concept table in the test set when dog is spuriously
correlated with table in the training set, but not in the test set. Further methods
include the editing of classifiers [107] that can control the behavior of an image
classifier by using only a single example, P-ClArC [7], which projects out concept
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directions, and RR-ClArC [27], which regularizes CAVs during training to guide
the model to become less reliant on biases. Similarly to CBMs, post-hoc C-XAI
methods require a predefined set C of concepts.

Open Challenges

We identify three underexplored areas: imposing logic constraint, application of
concept control, and mitigation of side effects which are explained below.

Imposing Logical Constraints. Logical constraints can be imposed on concepts
and allow for tight neurosymbolic integration [24,59,114]. Such logical constraints
can be used to guarantee the consistency of the model’s reasoning [114] and to
align the model with a knowledge base or with different criteria by the user [24]
(e.g., criteria related to ethics, privacy, and safety). C-XAI brings in the benefit
that one can directly act on concepts in the embedding space of intermediate
layers of a pretrained model instead of on the model’s output (e.g., removing skin
color, which is usually not an output label, from an intermediate layer for fairness
assessment). Controlling intermediate representations promises to achieve higher
coverage of concepts and performance and greater flexibility.

We highlight two future challenges on how such constraints can be enforced:
(i) by 3guiding the model training and (ii) 3globally modifying intermediate
representations. For the first challenge, one can use a �multi-task training routine
that simultaneously or alternatingly updates the concept models to maintain a
correct association of the concepts, and updates the model parameters according
to both the main task and the constraints on the concepts. Constraints may
be formulated and approximated using regularization terms, as proposed in
the semantic loss formulation in [9, 125]. In contrast to this “soft” approach to
model weights for the first challenge, the second challenge can be tackled by
inserting intermediate processing steps that will modify the intermediate input
representations to comply with the constraints, for example, by �linear projection
or linear skew. A proof of concept is shown in [100], but this was on simplistic
unit-vector concepts. Generally, 3it remains to be shown that logical constraints
can be applied to diverse image datasets and with varying expressivity of the
logical constraints, for example, allowing relations or functions in addition to
concepts in the logical constraints.

Note that the logical constraints imposed on the model need to be compatible
with the rules that can be extracted from the same model (cf. Sec. 4). More
precisely, depending on the expressivity [114] of the logic language used to extract
the rules from the model, logical constraints of high or lower expressive power
can be imposed on the model. Therefore, investigating the reasoning of the model
can affect concept control.

Applications of Concept Control. The motivation for concept control can
come from various applications, such as model editing and debugging, increasing
the robustness of models against adversarial attacks or distribution shifts [66], or
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3avoiding catastrophic forgetting (i.e., retaining previously learned knowledge)
in new tasks in a lifelong learning scenario [121]. For example, a self-driving
car that was trained to recognize humans based on specific clothes may fail in
areas with a different climate or culture. Although model editing and debugging
are performed on a model after training, catastrophic forgetting can already be
mitigated at training time by regularizing by �penalizing deviation of the model’s
ontological commitment across different tasks.

Evaluating C-XAI methods is still an open problem [94]. Approaching C-XAI
from the perspective of concept control with �concrete objectives in applications,
such as model correction [27], can be an effective way to evaluate C-XAI methods .
Therefore, 3identifying what potential applications can benefit from concept
control and comprehensively evaluating the controllability of C-XAI methods in
such applications can be beneficial for the C-XAI research.

Mitigating Side Effects. Concepts can depend on each other; for example, in
most cases the concept car co-occurs in an image with wheel which again includes
the concept round. Thus, modifying a concept globally can affect other concepts,
for example, replacing round with rectangular affects concepts wheel and car. This
side effect, which is also known as the ripple effect in the language model editing
literature [19], can be a big impediment to controlling concepts. 3Identifying the
side effects of a specific concept control mechanism and avoiding the side effects
are therefore important open challenges. �Inspirations from C-XAI approaches to
natural language processing (e.g., [19]) could be a starting point for next steps.

6 Conclusion

In this paper, we have examined the current state and open challenges in C-XAI
for CV, focusing on concept types, expressive representations, and use of control.
We identified three currently underexplored areas with high potential to advance
the field:

(i) Expand the types of concepts that can be extracted and analyzed to
temporal ones, as well as recent model architectures like ViTs.

(ii) Inspired by knowledge representation, develop richer concept representa-
tions that go beyond simple point-estimate vector embeddings and capture
the complexity and relations of concepts learned by CV models.

(iii) On the application side, improve the techniques for concept control by
imposing logical constraints directly on the model’s internal representa-
tions.

Addressing these challenges, C-XAI methods can provide deeper insights into the
inner workings of vision models and enable more fine-grained, interactive control
over their behavior. This will be crucial for the verification and maintainability
of critical CV applications. We hope to have provided a good starting point for
researchers new to the field, as well as helpful inspiration for the community to
advance it further.
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A Appendix

A.1 Taxonomy of C-XAI Methods
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local
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Fig. 4: Detailed taxonomy of state-of-the-art C-XAI methods.

A.2 Details on the Illustration of Concept Distribution

The illustration of the concept distribution in EfficientNet-B0 from Fig. 3a, shown
in its separate steps in Fig. 5, was obtained as follows:

1. The local concept vectors are obtained using the GCPV optimization tech-
nique suggested in [81] with the difference that the optimization objective
was changed to pseudo-BCE-loss like in [35]: Given an image together with a
concept label, a linear classifier is optimized to correctly classify the activation
map pixels of this single image as a concept or background. The normal
vector of this linear mapping is then taken as the concept embedding vector
for this concept local to this image. This is essentially a local version of
Net2Vec [35], where the resulting vectors represent concepts in the context
(background) for each sample.

2. This procedure was applied to the concepts shown belonging to the supercat-
egory “animal” of the MS COCO dataset [68], and the activations of the last
layer of features.7.0 of EfficientNet-B0 [117].
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Fig. 5: Some creation steps of Fig. 3a, from left to right : (1) Given the local concept
embedding vectors, apply UMAP for dimensionality reduction; (2) fit Gaussian mixture
models and determine boundaries of standard deviations; (3) add background shading to
indicate most probable concepts (here shown for all 3 graphics), and overlay everything.

3. The reduced dimensionality points shown are the density-preserving L2-
distance UMAP [79] 2d-mapping of the set of embedding vectors of the
local image concept (of all concepts).

4. On each concept’s vectors separately, a multivariate Gaussian mixture
model was trained to capture a 2d representation of their distribution.
The number of components was determined using the Bayesian information
criterion (BIC), using 1 to 3 components and ignoring outliers.
Note that despite doing the (non-distance preserving) UMAP mapping first
and only after that the distribution approximation, the diagrams can still
be considered informative, as UMAP preserves the local density information,
and thus separation of modes.

5. Ellipses are used to visualize the per-concept fitted multivariate Gaussian
distributions: They demarcate the boundary at one standard deviation of
each of the Gaussian components.

6. The background color marks are the most probable concept at that point
according to the fitted Gaussians.
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