Concept-Based Explanations in Computer Vision: Where Are We and Where Could We Go?

Jae Hee Lee¹, Georgii Mikriukov², Gesina Schwalbe³, Stefan Wermter¹, Diedrich Wolter³ ¹ University of Hamburg, ² Anhalt University of Applied Sciences, ³ University of Lübeck

Motivation

Concept-based XAI (C-XAI) explains how a vision model represents input in its intermediate layers using semantically meaningful concepts. Concepts act as a common alphabet between users and model.

Contributions

- Reviewing the state of the art in C-XAI.
- Discuss the state of the art and open challenges in
 - 1. extracting new concept types;

1. Extracting New Concept Types

Background

- Existing concept types are limited and the coverage can be extended.
 - image-level scene attributes (e.g., sunny).
 - image qualities (e.g., contrast).
 - attributes of image regions such as object (e.g., person) and object part classes (e.g., beak).
- 2. beyond classical vector-based concept representations; and
- 3. controlling concepts
- Discuss a potential role of ontological commitment in C-XAI.

C-XAI Review

• object attributes such as material, texture, and color.

Challenges: How to extract ...

- A. temporal and multimodal concepts (e.g., from videos)?
 B. concepts in a self-supervised way (e.g., from videos)?
- C. concepts from new architectures (e.g., ViTs)?

2. Improving Concept Representations

Background

- Existing concept representations: single neurons, vector-based representations, subspaces, latent space regions, or hierarchies of point estimates.
- Commonsense knowledge about concepts is essential for semantics.
 - E.g.: Since IsPartOf(head, person), the presence of a head implies the presence of a person.
- Ontological commitment refers to the catalog of defined concepts and relations *(e.g.,* IsSimilarTo(cat, dog), IsSubclassOf(cat, animal), IsPartOf(head, person)).
- Manually crafted, large ontologies aim to capture the ontological commitment of human common sense (e.g., WordNet).

• To connect these sources of information to C-XAI one has to ground ontology concepts in network activation.

WordNet

ResNet10

Challenges: How to ...

A. generalize concept representation (e.g., to regions/distributions)?B. identify the ontological commitments in trained models?

3. Controlling Concepts

Background

Given concepts c₁, ..., c_n, we can regard the corresponding concept vectors as a concept basis.

Examples of C-XAI methods

- The *i*th coordinate of an activation *x* with respect to that concept basis captures the strength of the presence of concept *c_i* in *x*.
- Intervention on concept c_i : increasing/decreasing the i^{th} coordinate leads to increasing/decreasing the presence of the concept in x.

Challenges: How to ...

- A. apply logical constraints to the activations with varying expressivity of the logical constraints?
- B. guide the model training and globally modify intermediate representations?
- C. avoid catastrophic forgetting (i.e., retaining previously learned knowledge) in new tasks in a lifelong learning scenario?
- D. identify side effects for a specific concept control mechanism and how to avoid them?