DCBM: Data-efficient Concept Bottleneck Models
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Motivation
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= Trust in applications requires interpretability of neural networks.

= Concept Bottleneck Models (CBMs) learn a linear mapping from concept activations to
classes that are inherently interpretable.

= CBMs main objectives:

— Meaningful human-interpretable concepts.
— Concepts are sufficiently specific for the given task.

— Efficient extraction of concepts from training images/classes.

Framework: Data-efficient CBMs

Step 1: Concept proposals are created using foundation models for segmentation / detection.

Step 2: Concepts are generated by clustering concept proposals to remove redundancies.

Step 3: CBM is trained to map concept activations to class labels.

Step 4: Visual concepts are mapped to text within CLIP space.
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Figure 1. The DCBM framework generates concept proposals through foundation models (Step 1). These
oroposals are then clustered, each represented by its centroid (Step 2). Finally, the concepts are utilized to train a
sparse CBM (Step 3). We leverage the image-text alignment to map the visual concept to the corresponding
textual concept (Step 4). We can remove undesired concepts after Step 2.
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Qualitative & Quantitative Results

Key Insights:
" DCBMs perform within at most 6% of the linear

No Description,
N O S u p e rVi S i O n 9 - EE?SFZ?SIEI ?:Ztr?csee;i ggposals slightly outperform

SAM?2 and GDINO.
= DCBM excels in domain specific tasks (CUB).

N O EXte rn a I Data o " DCBM concepts can be used in OOD settings.

" DCBMs achieve competitive performance based on
50 imgs/class as concept samples.

Table 1. Top-1 accuracy comparison across CBM models.

CLIP VIT L/14

Model

Extract Concepts from
YOUR Data. et BT e

LF-CBM [3] 7 - 494 380.1 9/.2 83.9 Predicted Class: raft

LaBo [6] 1 84.0* - - 97.8" 86.0"

CDM [4] 1 83.4% 5527 - 959 822 Figure 3. CBM concept explanation comparison.
DCLIP (2] 1 /50" 40.57 63.5" - : DCBM explanations contain no abstract concepts,
DN-CBM D11 83.67 3267 - 981" 86.0° e.g., fun, chlorinated water. The visual concepts In
DCBM-SAM2 (Ours) 4 779 521 818 977 854 DCBM should be prioritized over the textual ones,

DCBM-GDINO (Ours) 1 /74 5272 813 9/.5 85.3
DCBM-MASK-RCNN (Ours) 1 77.8 521 824 9/.7 85.6

as they originate from the image modality.

class:
Boat-tailed Grackle

because

Table 2. OOD performance. Error rate changes
compared between visual CBMs (CLIP ViT-L/14) on
ImageNet-R.

Table 3. Data-efficiency. DCBM concept proposals
are generated based on 50 images/class.

IN-200 IN-R Gap(%) DN-CBM [5] DCBM - ImageNet

DN-CBM [5] | 164 552 388 Dataset CC3M DUK Images
(50 imgs/class)
DCBM-SAM2 (Qurs) | 21.1 485 274 Mo 850 GB 4GB
. - - g DCBM-GDINO (QOurs) | 22.6 472 24.6 (assuming 256x256px)
Training samples Visual concepts Prediction DCBM-MASK-RCNN (Ours) | 222 44.6 22.4 No extra data y /
Figure 2: Using vision foundation models, we use cropped image regions as concepts for CBM
training. Based on few concept samples (50 imgs/class), DCBMs offer interpretability even for References
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