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Abstract

Vision-Language Models (VLMs) have shown remarkable
performance in integrating visual and textual information
for tasks such as image captioning and visual question an-
swering. However, these models struggle with composi-
tional generalization and object binding, which limit their
ability to handle novel combinations of objects and their at-
tributes. Our work explores the root causes of these failures
using mechanistic interpretability techniques. We show evi-
dence that individual neurons in the MLP layers of CLIP’s
vision encoder represent multiple features, and this " super-
position” directly hinders its compositional feature repre-
sentation which consequently affects compositional reason-
ing and object binding capabilities. We hope this study will
serve as an initial step toward uncovering the mechanistic
roots of compositional failures in VLMs. The code and sup-
porting results can be found here.

1. Introduction

Vision-Language Models (VLMs) have demonstrated im-
pressive capabilities in tasks like image captioning, visual
question answering, and zero-shot classification by inte-
grating visual and textual information. However, they of-
ten struggle with compositionality—the ability to under-
stand and reason about novel combinations of familiar con-
cepts [15]. In this context, compositionality refers to recog-
nizing combinations of known objects and attributes.

A related issue is the binding problem [1], where the
model fails to associate specific attributes (e.g., color,
shape, position) with the correct object. Robust binding is
essential for fine-grained and coherent multimodal under-
standing.

While techniques have been proposed to encourage Con-
volutional Neural Networks (CNNs) to develop composi-
tional representations [19], VLMs face additional complex-
ity due to their need to handle both visual and textual data
simultaneously.

We hypothesize that compositional failures in Vision-
Language Models (VLMs) stem from superposition [18],
where multiple concepts are entangled within shared repre-
sentational subspaces. This entanglement may lead to the
incorrect binding of objects, attributes, and relationships
within multimodal tasks. To investigate this, we employ
mechanistic interpretability techniques to analyze internal
representations and diagnose failure points. Our central re-
search question is: Are entangled or misaligned represen-
tations within the CLIP vision encoder the root cause for
failures in compositional reasoning?

We perform several experiments with CLIP’s vision en-
coder and note our observations about feature entanglement
at the neuron level. We use Grad-CAM to analyze the spa-
tial attention patterns of CLIP in response to compositional
text prompts. These visualizations revealed consistent at-
tribute—object binding failures, where the model incorrectly
attended to multiple unrelated regions or failed to isolate the
correct object-attribute pair.

To further investigate the underlying cause of these fail-
ures, we conduct a neuron-level analysis of CLIP’s MLP ac-
tivations. Using a synthetic dataset of simple shapes, colors,
and positions, we identified “feature neurons”, neurons that
respond selectively to specific visual attributes, and used
Shannon entropy to quantify their selectivity.

The results of our experiments strongly suggest that in-
dividual neurons encode multiple visual concepts, proving
the presence of superposition. We also show that superpo-
sition of features in neurons is related to how separable the
features are in the output embedding space.

2. Related Work

Compositionality and Binding in VLMs. Previous stud-
ies [1, 20] have shown that VLMs struggle with associating
attributes like color, shape, and count to specific objects,
often leading to compositional failures. While these works
document the failures, our work goes further by investigat-
ing internal representations—specifically superposition and
attention misalignment—as potential causes.



CLIP Interpretability and Concept Alignment. Recent
work [5, 10] quantifies how CLIP-like models align with
human-understandable concepts using attention and text de-
composition. In contrast, our work is focused on uncovering
why these models fail at binding—by tracing failure cases
to specific neurons and spatial attention behaviors. We use
techniques from tools like Prisma [4, 7] for analyzing the
CLIP models.

Superposition. Elhage et al.[3] explores polysemanticity
of neurons using small ReLu networks and by limiting the
data to sparse input features. Olah et al.[13] expands su-
perposition to vision tasks and proposes that superposition
exists across circuits within the network. Our work focuses
on neuron-level superposition and also studies how it af-
fects Object binding and compositionality problems for vi-
sion and multimodal tasks.

3. Methodology
3.1. Datasets

Following are the datasets we use throughout our experi-

ments:

1. CIFAR-10 dataset that contains 60000 images that be-
long to 10 different classes. [8]

2. A toy Shapes dataset we created, containing 500 images
with simple shapes of different colors.

3.2. Model

We use the pretrained CLIP-ViT-L/14 [14] model and
its associated pre-processor due to the wide use of CLIP and
its variants as the vision encoder in most VLMs. We pick
the simplest variant to allow easier examination of internal
representation. The vision encoder component takes a sin-
gle RGB image of size 224x224 and outputs an embedding
of length 768.

3.3. Visual Grounding with CLIP and Gradient-
Based Localization

Although CLIP [14] has a strong performance on tasks like
image retrieval and zero-shot classification, it often strug-
gles to bind attributes to objects (e.g., confusing ’a red
square’ with ’a red circle’) or correctly interpret spatial and
relational signals. One possible reason for these failures is
misalignment in the model’s attention mechanisms. That is,
even if CLIP correctly identifies relevant features, it may
not bind them to the correct object instance. To investigate
this, we use gradient-based attribution—specifically Grad-
CAM [16]—to visualize which parts of an image CLIP at-
tends to when making a prediction for a given text prompt.

3.3.1. Activation and Gradient Extraction

To understand which visual features influence CLIP’s pre-
dictions, we register hooks on the final MLP layer of the vi-
sion encoder to capture both activations and gradients. Dur-

ing the forward pass, we record the activation maps for the
image. Then, we perform a backward pass on the proba-
bility corresponding to a specific text prompt, which gives
us the gradient of the prediction with respect to the image
features.

3.3.2. Grad-CAM Computation

We compute a Grad-CAM heatmap for each prompt using

the following steps:

1. A forward pass computes the similarity score S; between
the image and a text prompt ¢.

2. A backward pass computes the gradient of S; with re-
spect to the activation map A € R¥>*WxC from a cho-
sen layer in the vision transformer:
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3. We average the gradient across spatial locations to com-
pute importance weights for each channel:
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4. These weights are used to compute a weighted combina-
tion of the channels in the activation map:
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This procedure reveals the spatial regions that contribute
the most to the CLIP decision for a given text prompt. By
analyzing these attention patterns across different prompts
and images, we gain insight into how CLIP binds - or fails
to bind - semantic attributes to objects in its visual represen-
tation.

3.4. Analyzing CLIP Activations

To better understand the behavior of the CLIP vision en-
coder and to search for evidence of superposition, we focus
our analysis on the activations of the MLP layers. MLPs
are a natural target for such investigation, as they consti-
tute the majority of a transformer’s parameters. Prior work
has shown that MLPs in large language models function as
key—value stores [6, 12], and are responsible for encoding
factual and compositional knowledge. We hypothesize that
MLPs in the CLIP vision encoder may play a similarly im-
portant role in storing visual concepts and their associations.

3.4.1. Toy Shapes Dataset

To facilitate this analysis, we construct a toy dataset of
500 synthetic images. Each image contains 1 to 5 ob-
jects, with features randomly sampled from a controlled
set of attributes: 5 shapes (circle, triangle, square, pen-
tagon, hexagon), 6 colors (red, green, blue, pink, black,



Algorithm 1 Identifying Feature-Selective Neurons in
CLIP Vision Encoder

1: for each neuron n in all MLP layers do

2 Rank all images by activation of neuron n
3: Select top-k images with highest activation
4
5

for each feature f; in the dataset do
Count occurrences o; of f; across the top-k im-

ages
6: end for
7: for each feature f; in the dataset do
8 Compute feature affinity value a; = ﬁ
9: end for ’

10: Compute Shannon entropy

11: end for

12: Sort neurons by ascending entropy
13: return Neurons with lowest entropy as highly selective
neurons

yellow), and 5 spatial locations (top-left, top-right, bottom-
left, bottom-right, center). A few example images from this
dataset are shown in Figure 2.

The low visual and semantic complexity of this dataset
enables more direct correlation between object-level fea-
tures and neuron activations in CLIP. This setting allows us
to isolate and interpret the behavior of individual neurons,
making it easier to identify feature selectivity and potential
cases of superposition.

3.4.2. Methodology

For our analysis, we record the activation of every neuron in
the final linear layer of each MLP block within the CLIP vi-
sion encoder. The CLIP-ViT-L/14 model [14] consists of 24
transformer blocks, and each block contains an MLP with
two layers with 1024 neurons each. For this study, we con-
sider only the neurons on the output layer. This results in
a total of 24,576 MLP neurons whose activations are moni-
tored across the dataset.

We perform Algorithm 1 to get highly selective neurons.
The Shannon Entropy [17] metric helps us identify infer-
esting neurons that respond selectively to a small subset of
features while remaining inactive for others. Entropy ef-
fectively quantifies the degree of bias a neuron exhibits to-
ward particular features. A lower entropy indicates a peaked
distribution implying strong preference for a few features
while higher entropy suggests a uniform distribution, mean-
ing the neuron responds similarly across diverse features
and is therefore less informative for our analysis.

The Shannon entropy of the feature-occurrence distribu-
tion for a neuron is computed as:

N
Entropy = Z —a;loga;

i=1

CLIP Pooler Output on CIFAR-10
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Figure 1. t-SNE plot of CLIP pooler outputs on CIFAR-10. Each
point represents a single image embedding colored by its ground-
truth class label.

0;
N
j=1

where a; =
0

Here, a; denotes feature affinity of the neuron to a fea-
ture ¢ and it is computed from o; which denotes the average
number of occurrences of feature ¢ among the neuron’s top-
k activating images, and N is the total number of features.
In our experimental setting, & = 30 and N = 16, corre-
sponding to 5 shapes, 6 colors, and 5 spatial positions.

Neurons with the lowest entropy values are prioritized
for further analysis, as they are more likely to encode dis-
entangled, semantically meaningful features.

4. Experiments
4.1. CLIP on CIFAR

To understand how CLIP’s vision encoder represents image
categories, we extract the pooler outputs (final [CLS] em-
beddings) for a subset of CIFAR-10 images and projected
them into 2D space using t-SNE, a non-linear dimensional-
ity reduction technique, to visualize the embedding space.
This visualization is shown in Figure 1.

The figure reveals several key observations:

1. Class-specific clusters are clearly separable for most cat-
egories, indicating that CLIP’s frozen vision encoder re-
tains discriminative features even when trained without
supervision on CIFAR-10.

2. Some overlap is observed among semantically similar
categories (e.g., dog, cat, horse, deer), hinting at poten-
tial superposition in the latent space, where related con-
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Figure 2. Sample images from the toy dataset used to study MLP activations in CLIP vision encoder

cepts are partially entangled.

These insights validate that the vision encoder itself
maintains a strong semantic prior. The proximity between
related clusters strongly hints at embedding-level superpo-
sition.

We found that because of the rich features of the CIFAR
classes, the CLIP neuron activations were harder to analyze.
Therefore, we created a simpler dataset, described in 3.4,
consisting of shapes and colors with minimum feature over-
lap.

4.2. Analysis of Compositional Failures via Grad-
CAM

To better understand the cause of compositionality failures
in CLIP, we begin with a qualitative analysis using Grad-
CAM. Grad-CAM is employed here due to its simplicity,
transparency and strong grounding in prior interpretability
work [20]. Specifically, we ask: when CLIP fails to bind
attributes (e.g., color, shape, or spatial relations) to objects,
can this be observed directly in its visual attention? This
section investigates whether the model’s failure modes are
reflected in the spatial localization of its attention, as cap-
tured by gradient-based attribution.

We evaluate CLIP’s ability to correctly associate mul-
timodal concepts by comparing Grad-CAM visualizations
for a set of text prompts applied to the same input image.
Table | presents these comparisons. Below, we analyze the
results case-by-case.

4.2.1. Geometric Shapes Image

Prompt: “a green circle”

This case demonstrates successful grounding: CLIP cor-
rectly localizes the green circle, showing that when the
prompt exactly matches the image content, the model is ca-
pable of precise visual grounding.

Prompt: “a green square”

There is no green square in the image; however, CLIP’s at-
tention is split between the red square and the green cir-
cle. This illustrates a binding problem—the model detects
color and shape as separate, unbound features. Rather than
suppressing attention when the full conjunction is missing,
CLIP incorrectly activates over both partial matches.

4.2.2. Dog And Pot Image (A Dog Behind a Flower Pot)

Prompt: “a dog”

The model successfully identifies the presence of a dog and
focuses its attention primarily on the animal. Notably, the
Grad-CAM heatmap reveals concentrated activation around
semantically salient regions such as the snout, paws, and
face. This focused attention on characteristic parts sug-
gests that CLIP’s visual encoder attends to discriminative
features when grounding basic object categories. It also in-
dicates that, in the absence of compositional cues or rela-
tional modifiers, the model is capable of forming relatively
clean object-level representations.

Prompt: “a dog behind a pot” This spatially compositional
prompt results in scattered attention across the image, in-
cluding the dog, the background, and pot regions. CLIP
appears unable to interpret and localize relational or posi-
tional language in a grounded way, indicating a limitation
in compositional grounding.

These results demonstrate that CLIP’s internal represen-
tations, while effective at coarse image-text alignment, lack
robust feature binding. The model tends to process object
categories and attributes (e.g., shape, color, spatial relation)
independently, often resulting in incorrect or ambiguous lo-
calization.

4.3. MLP Analysis — Feature Neurons

Through the neuron activation analysis described in Sec-
tion 3.4, we identified several neurons with strong pref-
erences for specific visual features. Figure 3 shows the
distribution of the entropy values of all MLP neurons in
CLIP-ViT-L/14 computed over the Toy Shapes dataset. A
subset of low-entropy neurons—referred to as feature neu-
rons—are presented in Tables 2, 3, 4 along with their en-
tropy value & percentile, top activating features, average
activation when the feature is present, and images from the
dataset that produce the highest activations in that neuron.
As shown in the tables, the low-entropy neurons exhibit
clear selectivity and consistent activation patterns in re-
sponse to specific features. Their top-activating images pre-
dominantly contain a single, distinct object characterized by
the target feature, providing strong evidence for their spe-
cialization. In contrast, the high-entropy neurons display no



Original Image Text Prompt

a green circle

a green square

a dog

dog behind pot

Grad-CAM Heatmap
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Table 1. Grad-CAM results for different text prompts. Each row shows how CLIP’s attention shifts for various descriptions of the same
image. Incorrect or partial attention localization reveals binding failures (e.g., attending to both green circle and red square for “green

square” prompt).

clear or consistent visual pattern across their top activations.
This does not imply that these neurons are meaningless or
uninformative; rather, it is likely that their preferred features
are underrepresented or absent in our toy dataset.

4.4. MLP Analysis — Evidence of Superposition

Many of the feature neurons identified in our analysis ex-
hibit signs of superposition [3], that is, they respond to

multiple distinct features simultaneously. For example, the
5637% neuron in the 16" transformer block (highlighted
first in Table 2) shows high activation for both circular and
square shapes. To verify this, we analyzed the patch-wise
activation maps of this neuron across several test images.

Figure 4 presents a set of images alongside the corre-
sponding activation maps of this neuron. In the first exam-



ple, we observe that the neuron’s activation is strongest (de-
noted by yellow and red regions) in areas containing its pre-
ferred features namely circles, squares, and the colors pink
and red. In contrast, regions containing unrelated features
such as triangles or blue objects elicit weak responses (blue
regions in the heatmap). This suggests the neuron does not
indiscriminately fire, but instead responds selectively to a
combination of semantically meaningful features.

To further support this observation, we examine activa-
tion maps on single-object images. In the second and third
rows of Figure 4, the neuron activates strongly only in the
presence of one or more of its preferred features. In the final
row, where the image contains none of the relevant features,
the activation is low throughout the entire spatial map indi-
cated by uniformly blue regions.

These results provide strong evidence that the neuron si-
multaneously encodes multiple visual concepts, validating
the presence of superposition. Understanding such behav-
ior is crucial for downstream compositional reasoning, as
neurons that entangle multiple features may introduce am-
biguity when precise attribute—object bindings are required.

As a side note, one reason for the activations in Figure 4
are not very spatially focused on the locations of the objects
in the image, is that image tokens pass through many layers
of self-attention, which mixes and redistributes information
across tokens. As a result, neurons in the later layers may
respond to features that are no longer in the same location
as they were in the original image. Another possible reason,
one that complements the first, is that ViTs often use back-
ground tokens as places to gather and process information.
Darcet et al.[2] found that ViTs tend to select less impor-
tant tokens, often from background regions, and use them
as pooling spots to combine information from other tokens.
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Figure 3. Distribution of the entropy of neuron feature-affinity
values in CLIP-ViT-L/14, evaluated on the Toy Shapes dataset.
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Figure 4. Images from the toy dataset and the patch-wise acti-
vation map of 563rd neuron in layer 16 showing affinity of this
neuron to square and circle shapes (first three rows). The neuron

shows largely low activations on the bottom-most image contain-
ing only a triangle, which is not a target feature for this neuron.

A

4.5. Effects of Superposition

4.5.1. Motivation

Building on the evidence of superposition, we hypothe-
size that such neuron-level superposition erodes the model’s
ability to form clean, compositional object—attribute bind-
ings. In other words, if the same low-entropy neuron fires
for both “red” and “square”, the model may confuse a red
circle for a green square.

4.5.2. Method

Taken from the 16 features in our shapes dataset, we create
pairs of features. For every ordered feature pair { f1, f2) we:

1. Quantify superposition using for the 1000 lowest-
entropy neurons. The measure for Superposition or S,



16th Layer 563rd Neuron | Entropy: 3.36 (0.18 %ile)
Top Features: Circle (0.57), Pink (0.57), Square (0.53), Top-Left (0.4), Red (0.3)
Image 1 Image 2 Image 3 Image 4 Image 5 Image 6 Image 7 Image 8 Image 9 Image 10
Image 11 Image 12 Image 13 Image 14 Image 15 Image 16 Image 17 Image 18 Image 19 Image 20
|
| | | | | |
Image 21 Image 22 Image 23 Image 24 Image 25 Image 26 Image 27 Image 28 Image 29 Image 30
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Table 2. Top features and Top activating images for 563rd Neuron in the 16th Layer. This neuron activates the most when handling images
containing square and circle shapes and the color pink.

22nd Layer 447th Neuron | Entropy: 3.34 (0.08 %ile)
Top Features: Circle (0.6), Middle (0.6), Pentagon (0.47), Pink (0.37), Top-Left (0.3)
Image 1 Image 2 Image 3 Image 4 Image 5 Image 6 Image 7 Image 8 Image 9 Image 10
8 o L 8
Image 11 Image 12 Image 13 Image 14 Image 15 Image 16 Image 17 Image 18 Image 19 Image 20
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Table 3. Top features and Top activating images for 447th Neuron in the 22nd Layer. This neuron activates the most when handling images
containing the circle and pentagon shapes and the middle position.

measured between features f7 and f5 is 4.5.3. Results
n () (i) Scatter plots of Measure of Superposition or .S versus D and
aj, +ay M are shown in Fi 5,6 tivel
S(f1, fo) = 1 f2 are shown in Figures 5, 6 respectively.

i1 2;6:1 a(flj) The key observations from these plots are -

1. Inverse relation with distance. Feature pairs that are su-
perimposed more (high .S) exhibit smaller cluster gaps
(low D) in embedding space. This indicates that su-

perposition pulls concept representations closer together,

where a(f? is the affinity of feature j to neuron i.
2. Quantify compositional separability of the corre-

sponding image embeddings. The metrics used for this

are

* Cluster-center distance D(f1, f2): the Euclidean
distance between the two single-feature centroids
(larger is better).

* Misclassification rate M( f1, f2): fraction of embed-
dings whose nearest centroid is of the wrong feature
(smaller is better).

reducing their geometric separability.

. Direct relation with error. The same high-S pairs suf-

fer higher misclassification rates 1/, showing that en-
tangled neurons translate into increased attribute—object
binding mistakes.

The experiment demonstrates a connection, albeit a

weak correlation that warrants further investigation, be-



18th Layer 466th Neuron | Entropy: 3.4 (0.38 %ile)

Top Features: Pink (0.63), Black (0.4), Square (0.37), Bottom-Right (0.37), Pentagon (0.3)

Image 1 Image 2 Image 3
Image 11 Image 12 Image 13
Image 21 Image 22 Image 23

Image 4 Image 5
Image 14 Image 15
Image 24 Image 25

Image 6 Image 7 Image 8 Image 9 Image 10
Image 16 Image 17 Image 18 Image 19 Image 20
Image 26 Image 27 Image 28 Image 29 Image 30

Table 4. Top features and Top activating images for 466th Neuron in the 18th Layer. This neuron activates the most when handling images
containing pink and black shapes.
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(S) for Feature Pairs

tween superposition inside CLIP’s MLP layers and its ex-
ternal difficulties with compositional reasoning.

5. Limitations and Future Work

This study is limited to the CLIP-ViT-L/14 model, whereas
most modern vision-language models (VLMs) adopt vari-
ants such as SigLIP[11] and alternative architectures like
SAM [9]. Future work could strengthen our claims by es-
tablishing a more direct causal link between weak com-
positional feature representations and failures in composi-
tional reasoning. Additionally, extending our analysis to
more complex, feature-annotated datasets would facilitate a
deeper investigation into the relationship between neuronal
feature superposition and compositional reasoning limita-
tions.

6. Conclusion

Our study uncovers a mechanistic connection between in-
ternal feature representation and CLIP’s image embeddings.

1. Neuron-level superposition. Feature entanglement is
present not only at the embedding-level but all the way
down to individual neurons, many of which may encode
multiple, semantically unrelated attributes.

2. Impact on compositionality. The stronger this su-
perposition, the weaker CLIP’s ability to bind ob-
jects and attributes: high entanglement predicts smaller
embedding-space separation and higher misclassifica-
tion rates on compositional tasks.

These findings establish superposition as a key bottle-
neck for object—attribute compositionality and motivate fu-
ture work on disentangling neuron activations to improve
CLIP’s feature representation.
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