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Abstract

Visual explanation methods have been effective in interpret-
ing the outputs of object detectors by highlighting important
regions corresponding to each model prediction. However,
existing approaches have largely overlooked inter-object re-
lationships—particularly the relative importance of each
pixel across different objects, a concept we refer to as Ob-
Jject Discrimination (OD). In this paper, we propose differ-
ence maps, a novel visual explanation technique designed
to enhance the interpretability of object detectors with re-
spect to OD. Serving as a complementary tool to existing
instance-specific heat maps, difference maps improve their
ability to isolate the impact of key features of individual ob-
Jects on model outputs. Our qualitative and quantitative
evaluation results show that the proposed difference maps
can effectively distinguish key features specific to the tar-
get object, capturing the relative importance of each pixel
across different predictions within the same scene. QOur
method is applicable to a wide range of object detectors,
including one-stage, two-stage, and transformer-based ar-
chitectures. Furthermore, it enhances existing heatmap-
based visual explanation methods by improving focus on
the detected object. These results demonstrate the utility of
our approach in improving model transparency and inter-
pretability across different detection architectures and ex-
planation techniques.

1. Introduction

Deep neural networks (DNNs) [10] have driven significant
progress in object detection and numerous computer vi-
sion tasks, demonstrating remarkable performance across
a variety of applications. Despite these advancements, un-
derstanding the decision-making process of DNNs remains
challenging due to their complex and often opaque struc-
tures. As spatial convolution is integral to many leading
models in computer vision, this has inspired the devel-
opment of class-specific attention mechanisms [1, 27, 40]
to enhance the interpretability of convolutional neural net-
works (CNNs). These methods generate visual heat maps

that highlight important regions in input images, thereby
elucidating the contributions of individual pixels to model
predictions.

Building on the efforts to interpret CNNs, researchers
have developed various approaches to generate visual ex-
planation for deep learning models including object detec-
tors. Perturbation-based methods [3, 5, 8, 15, 20, 23, 26, 32]
systematically modify parts of an input image to identify re-
gions that significantly impact model decisions. Class acti-
vation map-based (CAM-based) methods [4, 6, 27, 33, 37,
40] adopt weights that reflect the importance of each fea-
ture in the feature activation maps to produce heat maps.
Furthermore, gradient-based methods [4, 27, 28, 38] ana-
lyze the gradients of detector outputs to reveal critical fea-
tures influencing predictions. For object detectors, instance-
specific explanations effectively highlight important regions
for each prediction [23, 36, 37, 37, 38]. However, these
methods typically neglect the relative importance of each
pixel across different objects—meaning that the highlighted
regions may be simultaneously important for multiple ob-
jects within the same scene. In scenarios where certain pix-
els are more critical for one object than for others, this re-
flects a specific form of inter-object relationship, which we
term Object Discrimination (OD). Such object relationships
can play a critical role in detection outcomes, as interac-
tions between objects can influence how models interpret
individual object features and make predictions [14]. Nev-
ertheless, the key limitation of current explanation methods
lies in their insufficient exploration and explanation of inter-
object relationships.

To address this gap, our work focuses specifically on OD,
aiming to identify which object was actually detected by
distinguishing it from other objects within the scene. To
visualize this relationship, we propose the difference map,
which highlights regions that are specifically important for
detecting the target object as opposed to its neighbors. This
approach enhances the interpretability of object detectors
by incorporating object-specific discriminative factors into
the explanation. The main contributions of this work are
two-fold:

1. We enhance the explainability of object detectors by



considering Object Discrimination, and propose the dif-
ference map to isolate the influence of the key features
for the prediction of a specific object instance from other
objects within the same scene.

2. We demonstrate the effectiveness and generality of our
proposed method through both qualitative and quantita-
tive evaluations. Our approach is applied across various
types of object detectors, including one-stage, two-stage,
and transformer-based architectures. In addition, we in-
tegrate the difference map with multiple heatmap-based
visual explanation methods and show that it improves
the original heatmaps by enhancing focus and reducing
irrelevant highlights.

2. Related Works

Object detection. Object detectors typically consist of
three main components: a backbone, a neck, and a head.
Depending on the type of head used, detectors are generally
categorized into one-stage and two-stage methods. Two-
stage detectors generate region proposals first, followed by
utilizing Region of Interest (Rol) features for subsequent
object classification and localization refinement. Prominent
examples of this category include R-CNN series, such as
R-CNN [10], Fast R-CNN [9], Faster R-CNN [25], and
Mask R-CNN [13]. In contrast, one-stage detectors elim-
inate the need for Rol feature extraction, directly perform-
ing object classification and localization on the entire fea-
ture map. Representative approaches include YOLO [24],
RetinaNet [18], and FCOS [29]. More recently, transform-
ers have been successfully integrated into object detection
architectures. They have been used both as a backbone
for feature extraction, exemplified by the Pyramid Vision
Transformer (PVT) [35], and as detector heads, such as in
DETR (DEtection TRansformer) [2]. Our methods offer ex-
planations for both one-stage and two-stage detectors, as
well as transformer-based detectors.

Visual explanation for object detection. Visual ex-
planation serves as an effective and intuitive method for
interpreting deep learning models, including object detec-
tors. A common approach to generating such explana-
tions is through heat maps, which highlight the important
pixels that led to the model’s prediction. Perturbation-
based methods like D-RISE [23], CAM-based approaches
like Spatial Sensitive Grad-CAM (SSGrad-CAM) [37], and
gradient-based methods such as Object Detector Activa-
tion Map (ODAM) [38] are notable examples that pro-
duce instance-specific heat maps for object detectors. D-
RISE [23] is a black-box perturbation-based approach, but
is computationally demanding and can be prone to noise.
SSGrad-CAM [37] and SSGrad-CAM++[36] build upon
Grad-CAM]27] and Grad-CAM++ [4], respectively, by in-
corporating spatial maps to generate more refined, instance-
specific heat maps. ODAM [38] leverages gradients of de-

tector targets with respect to feature maps to illustrate how
different regions influence the detector’s decision for each
predicted attribute. In this paper, our proposed method
mainly builds upon gradient-based ODAM [38], which was
designed to explain a single object instance, to explain
object-object interactions. Specifically, we enhance the vi-
sual interpretability of object detectors by isolating key fea-
tures that influence one object over other objects. Our
method is general and we show it can also be applied to
other heatmap-based visual explanation methods.

Counterfactual explanation. Counterfactual explana-
tions (CEs) aim to clarify why an object is classified as
a target class rather than an alternative class, typically by
identifying discriminative features [34]. For example, some
CEs generate image transformations that shift classifica-
tion from one class to another, including adversarial at-
tacks or generative approaches that seek realistic but per-
turbed images [7, 11, 19, 30, 31]. However, many genera-
tive methods are limited to simple datasets due to the dif-
ficulty of synthesizing realistic images, and exhaustive fea-
ture searches are often too computationally expensive for
real-time use [11, 19, 21]. In contrast, our paper aims to ex-
plain the relative importance of pixels to different objects in
the same image during detection. While CEs discriminate
between classes, our difference map highlights features that
distinguish one object from others within the scene. Im-
portantly, our method is not counterfactual, as it does not
rely on alternative class labels. Exploring the integration
of our approach with counterfactual explanations presents a
promising direction for future research.

3. Methodology

We propose difference maps for interpreting Object Dis-
crimination (OD), which is introduced to highlight pixels
that uniquely influence the detection output of a specific
object, isolating its key discriminative features from other
detected objects. This approach allows for a refined un-
derstanding of individual object contributions in complex
scenes. Difference maps can be generally applied to a wide
range of heatmap-based XAI methods, and here we use
ODAM [38] as the base XAl method to illustrate and evalu-
ate the effectiveness of our approach. Fig. | provides an
overview of the framework, detailing how the difference
map is constructed and integrated into the visual explana-
tion pipeline.

3.1. Object Discrimination (OD)

OD considers which object was actually detected, identify-
ing the key features that led to detection of the target ob-
ject, and which were not used by other objects in the scene.
While ODAM [38] generates instance-specific heat maps
that highlight critical regions influencing each prediction
independently, it is limited in distinguishing their relative
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Figure 1. Proposed framework of the difference map for Object Discrimination. The blue box is used only to indicate the target object in
the visualization and does not imply that object detections are available at the input stage. The difference map has high values (red) for
regions that have larger effect on that object’s output compared to other objects, and vice versa for low values (blue). The non-negative
entries of the difference map show the features that uniquely led to the detection of that object.

contributions on multiple detected objects. We propose the
difference map to address this by differentiating the influ-
ence of image regions (pixels) among various objects, pro-
viding a more refined explanation for OD.

In ODAM [38], the heat map H(®) for a single detector
output Y'(P) (e.g., class score, bounding box top-coordinate,
etc.) is derived using a pixel-weighted mechanism. Let
A, € REXW denote the k-th channel of the feature map
from a convolutional layer, where [{ and W are the spatial
height and width, and k& € {1, ..., K} is the channel index.

The detector output Y(P) € R is a scalar corresponding to

the p-th prediction. The importance weight map w,(f ) €

®)
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where o denotes element-wise multiplication. This method
highlights regions with strong contributions to ¥ (?) inde-
pendently of other outputs.

To provide a holistic explanation of the object predic-
tion, ODAM [38] creates a combined heat map H € R¥*W
from the heat maps for the predicted class and bounding box
regression coordinates using an element-wise maximum:

H = max (H(daSS)7 HE@D F), H(z2),H(y2)), (3)

where H(12%) represents the heat map for the object’s class
prediction, and H®Y, H@D  H®2) and H¥?) denote heat
maps for its predicted bounding box coordinates.

Min-Max Normalization is then applied to obtain the fi-
nal heat map:

max(H) — min(H)

In our method, for the ith object instance, we first con-
struct an ODAM combined heat map H;, without applying
the local smoothing operation ®. By omitting the smooth-
ing operation, our approach preserves raw gradient infor-
mation, directly emphasizing pixel contributions. The dif-
ference map A € R¥*W s then defined to evaluate the
feature importance of the ¢th object instance by comparing
its heat map H; with the maximum heat map of other ob-
jects H,, (for n # ) in the image:

Al = H; — maxf[n.

na> “

This formulation highlights regions critical to ith object rel-
ative to other detected objects, isolating features unique to
its detection. To obtain the non-negative difference map that
emphasizes the features that are more important to the de-
tected object, we apply the ReLU operation:

The non-negative entries of the difference map show the
features that uniquely led to the detection of that object.



Min-Max Normalization is then applied to A; or A/ to ob-
tain the final difference maps.

By comparing across multiple objects, our method of-
fers a more granular interpretation of OD, enhancing the
visual explanation in complex, crowded scenes. Note that
the difference map can be applied to any heatmap-based ex-
planation methods, such as Grad-CAM [27], D-RISE [23],
SSGrad-CAM [37] and SSGrad-CAM++ [36]. We provide
a comparison of the difference maps generated using differ-
ent methods in Fig. 4.

4. Experiments

In this section, we conduct experiments on the proposed dif-
ference map to: 1) evaluate the explanation method qual-
itatively and quantitatively; 2) offer a comparison for the
results generated with different detectors to provide a bet-
ter understanding of the characteristics and mechanisms of
these detectors; and 3) assess the generality of our approach
by comparing difference maps produced using various vi-
sual explanation methods.

4.1. Experiment Setup

We implement the methods using a variety of object de-
tection models, including the one-stage detector FCOS [29]
and the two-stage detector Faster R-CNN [25] with ResNet-
50 [12] as the backbone and FPN [17] as the neck, and
the transformer-based detector DETR [2] with ResNet-
50 [12] as the backbone, and the fully transformer detector
PVT [35] with PVT-Small as the backbone and FPN [17] as
the neck. We perform evaluations using the MS-COCO [16]
dataset. For qualitative evaluation, we provide examples us-
ing the four different detectors, along with a comparison of
difference map variants derived from different visual expla-
nation methods [23, 27, 36, 37]. For quantitative evaluation,
we compute the Deletion and Insertion metrics [4, 22, 23]
on FCOS [29]. All experiments are conducted using Py-
Torch and an RTX 3090 GPU.

4.2. Qualitative Evaluation

Difference map. The example results of difference maps
generated with the four different detectors are presented in
Fig. 2. More examples on FCOS [29] are provided in Fig. 3.
Compared to ODAM [38], our difference map significantly
reduces the highlighting of unrelated or misleading regions,
particularly those associated with neighboring objects of the
target. For example, in the second row of Fig. 3, the two
cows in the image exhibit spatial overlap, and the ODAM
heat map shows noticeable energy leakage between them,
i.e., regions important to one object are partially attributed
to the other. In contrast, our difference map focuses solely
on pixels that are specifically important to the target ob-
ject, with highlighted regions concentrated on the target it-
self and minimal leakage to adjacent objects.

For the results of object detectors with different archi-
tectures in Fig. 2, we have the following observations: 1)
The difference maps generated by FCOS [29] and PVT [35]
have overall larger areas of activation for each object in-
stance, with a deeper coloration implying higher activa-
tion values; 2) The highlighted regions in the difference
maps generated by Faster R-CNN [25] are confined within
the detection boxes and exhibit a rectangular shape. This
feature may be attributed to the RPN stage of Faster R-
CNN [25], which produces region proposals that are sub-
sequently passed to the second stage for classification; 3)
The regions highlighted in the difference maps generated
by DETR [2] are sparser compared to the other two detec-
tors. Additionally, these regions tend to concentrate around
the object’s edges, which is likely due to the nature of the
DETR [2] decoder, which aims to recover the bounding po-
sition from the decoder’s input queries.

In the difference maps of the second example (bottom
row containing a person, horse, and dog), it is interesting to
note that both FCOS [29] and DETR [2] attribute the legs of
the person to the person detection (legs are highlighted red
for the person bounding box). On the other hand, for Faster
R-CNN [25], the legs are attributed equally to the horse and
the person (the legs are neutral green color). Thus, we may
infer that for Faster R-CNN, the legs at the top of the horse
are equally important for both the horse and person.

Difference map generated using other methods. Our
proposed difference map is generalizable as it can be inte-
grated with any heatmap-based visual explanation method.
In Fig. 4, we present a comparative analysis of differ-
ence maps generated by our method, which builds upon
ODAM [38], alongside difference maps generated us-
ing several established heatmap-based methods, including
Grad-CAM [27], D-RISE [23], SSGrad-CAM [37] and
SSGrad-CAM++ [36] on FCOS [29]. Our qualitative re-
sults demonstrate that augmenting these methods with the
difference map refines the original heat maps by effectively
suppressing the highlighting of irrelevant or misleading re-
gions associated with detected objects. Notably, the dif-
ference map variant of D-RISE [23] significantly reduces
noisy areas, leading to clearer and more focused explana-
tions. These results suggest that our method can enhance
existing visual explanation methods by improving both in-
terpretability and user-friendliness.

4.3. Quantitative Evaluation

Deletion and Insertion. Deletion and Insertion metrics [4,
22, 23] evaluate changes in a detector’s outputs by selec-
tively deleting or inserting pixels from the original image
based on their importance. In the Deletion process, pix-
els are replaced with random values in descending order of
importance—starting from the most important ones in the
heat map (typically shown in red). The corresponding de-
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Figure 2. Comparison of ODAM saliency maps and our difference maps across multiple detectors: (a) FCOS, (b) Faster-RCNN, (c)
DETR, (d) PVT. We also visualize the positive part of the difference map (denoted as “> 0”) to intuitively visualize the new information it
uncovers. The bounding box indicates the target object. Red highlights in the difference map (middle) indicate influence only to the target
object, while blue highlights indicate influence to only other objects.

crease in the detector’s confidence score is then measured as
a percentage. Conversely, the Insertion process incremen-
tally adds pixels back to a blank image, beginning with the
most important ones, and tracks the increase in confidence
scores to assess the contribution of each region. The under-
lying rationale is that important pixels should have a greater

influence on the target prediction and thus lead to more sig-
nificant changes in the model’s output when altered. In the
experiments, we divide the total area of the ground truth
bounding box of the target object into 10 equal steps, each
representing 10% of the total area, and record the results
for 10 steps of Deletion and Insertion. Note that pixels can
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Figure 3. Comparison of original images, ODAM, and our difference maps for three different examples using FCOS. We vsualize the
positive part of the difference map (denoted as “> 0”) to intuitively show the information it uncovers compared to ODAM.

Target Object Other Objects

Method Del () Ins (1) | Del (1) Ins (1)
Grad-CAM 94.88 9.40 89.54 7.23
Grad-CAM (Dift.) 93.76 7.84 91.01 5.99
SS-GradCAM 64.91 25.67 | 94.99 2.66
SS-GradCAM (Diff.) 65.24 2633 | 95.70 3.10
SS-GradCAM++ 60.84  26.86 | 96.27 2.68
SS-GradCAM++ (Diff.) | 61.40  37.16 | 98.44 1.94
ODAM 61.27  46.06 | 96.12 3.14
Difference Map (ours) 60.74  44.25 99.01 1.58

Table 1. AUC for the Deletion and Insertion curves in Figure 5.
”Diff” indicates the Diference map calculated using the corre-
sponding visual explanation method. In the Deletion process,
a lower AUC for the target object indicates that removing im-
portant pixels significantly reduces its confidence score, while a
higher AUC for other objects indicates that their predictions re-
main largely unaffected. Conversely, in the Insertion process, a
higher AUC for the target and lower AUC for others reflects ef-
fective localization of discriminative regions. The best results are
shown in bold, and the second-best are underlined.

be deleted/inserted anywhere in the image according to the

heat map, and is not restricted to just the bounding box.
Experiment Setup. For the difference map, we define

each detected object in the image as the target object, with

the remaining objects in the same image as other objects.
We conduct the Deletion and Insertion experiment for the
difference map using FCOS [29] with the ResNet-50 back-
bone [12]. We calculate the Deletion and Insertion metrics
for predictions with the class score > 0.4 and IoU > 0.5
for images in the COCO validation set that contain multi-
ple such predictions, as the difference map is designed to
distinguish one object from multiple objects. For the target
object, we record its own score change, while for other ob-
jects, we record the change in their average score. Ideally,
the confidence score of the target object should exhibit a sig-
nificant change during Deletion or Insertion, indicating that
the identified regions are indeed critical for its detection.
In contrast, the scores for other objects should remain rela-
tively stable, as the difference map is specifically designed
to highlight features that are uniquely important to the tar-
get object, rather than shared or overlapping features. This
behavior reflects strong object discrimination and demon-
strates the ability of our method to isolate object-specific
information in complex scenes.

Results. Fig. 5 compares the score changes at each step
of the Deletion and Insertion experiments across various vi-
sual explanation methods and our proposed difference map.
The evaluated methods include the original ODAM [38],
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Figure 4. Comparison of saliency maps and difference maps generated using our method based on: (a) ODAM, (b) Grad-CAM, (c) D-
RISE, (d) SSGrad-CAM, and (e) SSGrad-CAM++ on FCOS. Left: The standard saliency map. Middle: Difference map including negative
values. Right: Difference map with only positive values. The difference map variants improves the original heat maps by effectively
reducing the highlighting of irrelevant regions of detected objects, leading to clearer and more focused explanations.

as well as the original versions and corresponding differ-
ence map variants (denoted as “Diff.”) of Grad-CAM [27],
SSGrad-CAM [37] and SSGrad-CAM++ [36]. Our method
demonstrates substantial score changes for the “target ob-
ject”, while exhibiting relatively minor score changes for
“other objects” at each step compared to other methods.
This indicates the effectiveness of the difference map, ver-
ifying that regions highlighted in the difference map have
a more significant impact on the target object compared to
other objects.

Tab. 1 shows the comparison of the corresponding area
under the curve (AUC) for the Deletion and Insertion
curves. In the Deletion process, a lower AUC for the rar-
get object is desirable, indicating that the removal of impor-
tant pixels results in substantial drops in confidence scores.
In contrast, a higher AUC for the other objects is prefer-
able, suggesting that their scores remain largely unaffected
and the highlighted regions are indeed specific to the target
object. Conversely, in the Insertion process, the interpre-
tation is reversed: a higher AUC for the farget object and
a lower AUC for other objects are indicative of successful
localization of discriminative regions. The AUC values for

other objects obtained using our difference map are the best
among all methods in both the Deletion and Insertion pro-
cesses, while the AUC value for the target object is also the
best in the Deletion process. This indicates that the high-
lighted regions produced by the difference map effectively
discriminate key features specific to the target object, cap-
turing the relative importance of each pixel across different
predictions within the same scene.

The difference map variants of the original heatmap-
based explanation methods demonstrate slightly superior
AUC results. Compared to the original ODAM, the ODAM
difference map (ours) achieves better AUCs in the Dele-
tion and Insertion processes for other objects, as well as in
the Deletion process for the target object. While its AUC
for the target object in the Insertion process (44.25%) is
slightly lower than that of ODAM (46.06%), it still sur-
passes all other methods. This slight drop is attributed to
the more focused highlighting of the target object in the dif-
ference map, which results in a smaller highlighted area.
Regarding other heat-map methods, the difference map ver-
sion of SSGrad-CAM++ achieves improved AUCs for other
objects in both Deletion and Insertion processes, along with
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Figure 5. Comparison of average class prediction score vs. (a) Deletion steps and (b) Insertion steps for ODAM and the difference map
on FCOS. For the “target object”, lower scores are better for deletion, while higher scores are better for insertion. For “other objects”,
higher scores are better for deletion, and lower scores are better for insertion. In both ODAM and the difference map, the target object’s
score exhibits substantial changes. However, for other objects, the difference map leads to smaller score change compared to ODAM,
demonstrating better ability to find features uniquely important for the target object.

a notable 10.3% increase in the Insertion process for the
target object. Similarly, the SSGrad-CAM variant shows
modest gains in AUC for the target object in the Insertion
process and for other objects in the Deletion process. The
class-specific method Grad-CAM performs poorly in iso-
lating instance-level objects, resulting in the worst AUCs.
However, its difference map variant improves AUCs in both
Deletion and Insertion processes for other objects, as well
as in the Deletion process for the target object. These re-
sults highlight the effectiveness of the proposed difference
map in improving existing visual explanation methods.

5. Discussions and Conclusion

This paper presents the difference map, an effective visual
explanation method designed to enhance the interpretability
of object detection models by focusing on Object Discrim-
ination (OD). Object Discrimination, as measured by our
difference map approach, identifies regions (key features)
that are more critical for the target object compared to other
objects in the same scene. This is achieved by refining the
instance-specific heatmaps produced by ODAM, thereby
offering a more detailed and object-specific understanding
of feature importance. To validate the effectiveness and
generality of our method, we conduct extensive qualitative
and quantitative evaluations across various types of object
detectors, including one-stage, two-stage, and transformer-
based models. Furthermore, we demonstrate that our differ-
ence map can be integrated into a range of existing heatmap-
based visual explanation methods, improving their ability to

generate focused and interpretable visualizations. These re-
sults collectively highlight the versatility and utility of the
proposed method in advancing the transparency of object
detection.

Limitations and future work. One aspect that the cur-
rent explanation framework does not consider is Object-
Object Discrimination, i.e., why 2 neighboring objects are
detected as separate objects and not as one. We will con-
sider this in future work, focusing on the bounding box in-
formation to look into the boundary between neighboring
objects and explain through the boundary’s influence. An-
other limitation is that the proposed methods do not enhance
the model’s performance, although that is not the focus of
this paper. For difference maps, we will investigate how to
utilize it in knowledge distillation to improve model’s accu-
racy, e.g., borrowing ideas from [39].
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