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Abstract. Monocular Depth Estimation (MDE) is an inherently ill-
posed problem due to the lack of binocular depth cues, despite this there
have been significant research done in this field in recent years. In an at-
tempt to bridge understanding between human and machine perception,
this paper investigates learned concepts from the general-purpose model
Depth Anything, focusing on features that are known to be present in
the human visual system. We perform interventions on different image
features within the KITTI and NYUv2 dataset, evaluating performance
on these intervened inputs. This led to interesting insights on how and
how much each of these features influence depth perception. These in-
sights contribute to bridging understanding of how humans and machines
perform MDE respectively, and we also hope it provides a new way for
future work to devise more robust methods of training neural networks
for MDE.

Keywords: computer vision tasks · monocular depth estimation · un-
derstandable artificial intelligence · human visual system

1 Introduction

Monocular Depth Estimation (MDE) aims to predict a dense depth map for a
given input image. Research in this field cover a wide range, from engineering
better performance and generalization to understandability and tackling specific
problems. It is a field under active research due to its applications in autonomous
driving [22], VR scene reconstruction [1], and robotics [7].

Given its nature of predicting depth from single two-dimensional images,
MDE is an inherently ill-posed problem. In recent years, the field has seen im-
provement in various forms: from powerful general-purpose models that aim to
produce large general models via mixing dataset in training [19], to a recent
work that aims to utilize large amounts of unlabelled data during training for
the same purpose [24]; as well as improvements in zero-shot scaled capabilities
through methods such as inclusion of camera intrinsics [10]. These have shown
that MDE in machines using depth cues only found in single images is practical.
However despite leaps of improvement in performance, the specific mechanisms
used by deep learning models to perform MDE and how these mechanisms com-
pare to the human visual system are still poorly understood.
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Fig. 1: An example of how destroying intensity information affects performance.
Top: Input, Middle: Prediction, Bottom: Ground truth dense map using infill

To address this gap in knowledge, we are inspired by works of causality in
computer vision [15,26], the human visual system [5,8], and existing attempts at
understanding MDE [6,25]. We build on these works to investigate how features
in images contribute to estimating depth. When performing analysis between
causal features it is important to choose the right features [26]. Existing works
that analyse how MDE can be better understood have placed focus on different
feature levels, ranging from placement of shapes [6] to image features [8] and
to latent representations within models [25]. In this work we choose to focus
on image features since it matches best with how the human visual system is
understood to work [8].

Following conclusions from [6,23], we accept the importance of global shape
and object placement to be significant and its removal to be devastating. We
instead focus on how texture, hue, saturation, and intensity impacts MDE when
global shape is maintained. An example of intervention and its effects is shown
in (Fig. 1). While [23] trains separate models on images intervened to retain only
single features, our work extends that work and is distinct in that we investigate
learned relationships in an existing state of the art model, and crucially retains
global shape and object placement, which is destroyed in the mentioned paper.

Texture in computer vision refers to the repetitive change in intensities in
parts of an image. It has been shown that the human visual system contains
explicit neural pathways to recognize texture, and that it contributes to depth
perception in humans. [5, 18] This can be understood intuitively as humans -
given similar texture, the further away an object the denser the texture should
appear on the image. Following our goal of comparing machine to human per-
ception, we choose it as one of our features.

Colour is the result of light perceived by a vision system, activated in the
human visual system in the visible light spectrum. Humans rely heavily on colour
for our visual understanding of the world [20]. In this paper, we consider colour as
the mixture of light received at a point. When considering colour, an appropriate
way of representing colour has to be chosen.

We choose to use the HSV colourspace, since we deemed it to represent
attributes closer to physical attributes and human understanding than other
representations. HSV is a colourspace designed to allow for more intuitive user
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interaction, proposed to capture colour in terms of its most noticeable features:
hue, saturation etc. This idea and the process for converting between the RGB
and HSV colourspaces are well known, and described in [12].

Hue is the dominant wavelength of a colour considered in the HSV colour
space. It contains information of the object through its natural colouration, but
is also affected by environmental lighting. At the beginning of this research it
was unclear how hue could affect depth perception, but in later experiments we
found its ability to help define boundaries of objects to be powerful.

Saturation is determined by the purity of colour. A singular wavelength makes
for the most saturated colour, while both mixing different wavelengths of light
leads to reduced saturation. It was originally conceived that saturation would
play a larger role in outdoor scenes than in indoor ones due to particulates in the
air diffusing colour, but this was not confirmed by quantitative results. However,
qualitative results suggest that large changes in saturation between neighbouring
objects tend to cause a difference in depth prediction.

Value is the brightness of colour, but to avoid confusion we shall refer to it as
"intensity" from hence on. In the HSV colour space brightness ranges from black
at 0 to the brightest possible colour at maximum. In experiments we find that
intensity carries the most contribution out of the three colour features, especially
in outdoor scenes where changes in intensity often causes the model to predict
a large change in depth.

2 Related Works

MDE is an increasingly popular research topic, and there have been various
studies that aim to understand inner workings of MDE models. A study looking
at MonoDepth [9] finds the model mainly estimates depth based on the height of
objects within the image, suggesting models learn shortcuts to estimate depth.
However what other shortcuts exists remains a gap in literature. This highlights
the importance of understanding what a neural network is using to perform its
predictions.

Causal reasoning is a field of study that has recently seen applications in
computer vision. These methods aim to disentangle the causal relationships that
exist within computer vision tasks. [15] introduces causal reasoning into 3D scene
reconstruction and saw an increase in performance. 3D scene reconstruction
being an ill-posed problem where spurious links traditionally required strong
regularization. This highlights the importance of encouraging models to learn
reliable relationships instead of spurious ones. A review on the use of causal
reasoning on computer vision also highlighted the importance of choosing nodes
on a structural causal model as features appropriate to the task at hand [4].

Extensive work has been done to understand the importance of global shape
and placement on monocular estimation, highlighting how these features are used
by deep learning models to make predictions. In a recent study also investigating
the roles of visual cues on MDE, [23] found that when shape is not preserved,
model performance drops severely. Similarly, a study studies the effect of chang-
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ing shape and positions of obstacles on a general purpose model [6]. Finally,
it is well known that the design of CNNs with their convolution architecture
commonly used in computer vision tasks [11] is to capture spatial and shape
relationships across scales. These reasons make it clear to us the importance of
shape in MDE, and thus we do not investigate is effect relative to the other lesser
understood features.

2.1 Monocular Depth Cues in the Human Visual System

Depth prediction performed in the human visual system is well studied. [5] anal-
ysed different visual cues that contributes to depth prediction, the ones which
are not applicable to MDE have been removed from this list. They are defined
as follows:

– Occlusion: when close objects occlude parts of those further.
– Relative size and density: difference in size of shapes and textures that should

be of similar sizes.
– Height in the visual field: the height of an object when viewed, relative to a

vanishing point.
– Aerial perspective: the effect of atmospheric particulates on perceived colour.
– Motion perspective: the difference of motion between close and distant ob-

jects.

2.2 Current MDE methods

CNN based models have been widely used in MDE [9], with various modifications
such as residual connections [11] and encoder-decoder networks with skip con-
nections [2]. Lately, vision transformers have become increasing popular, acting
as the backbones of a number of larger general purpose approaches. The power
of these models has led to researchers providing larger amounts of data in train-
ing, leading to [19,24]. In [24], the authors train a student model from a teacher
model with extra unlabelled data, which are perturbed, creating a more chal-
lenging training set that requires the model to learn more further cues. This
inspired us to investigate other cues in MDE tasks which can similarly make
more challenging training, perhaps even in a more meaningful way.

2.3 Causal Reasoning

Causal reasoning is the investigation of causality, the relationship of cause and
effect through a mathematical framework [17]. Given observations, this field of
study aims to discover the relationships between phenomena, whether one is the
cause of another, and how information flows through this network of causal links.
Spurious links are those that contain statistical correlation between two nodes,
but one is not a causal ancestor of the other. Unfortunately, spurious links are
abundant in data sets used in computer vision in form of data bias [26]. While
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Fig. 2: A structural causal graph directly adapted from [15].

there are methods that debias models once known [3,13], the discovery of these
correlations is still a challenging task.

For example, in the above mentioned mentioned [15], authors tackle 3D scene
reconstruction, which’s ill-posed nature traditionally called for strong regular-
ization. They find that by posing internal representations of the image (I) as a
structural causal graph (Fig. 2) between view point (V), depth (D), lighting (L),
and albedo (A), they were able to introduce a form of implicit regularization that
improved performance. This shows the potential of tackling complex computer
vision tasks as a combination of different feature cues.

3 Methodology

To analyse the effect of different image features on performance, we establish a
definition of feature contribution. The contribution of a feature is the percentage
drop in performance the model sees after an intervention has been performed to
scramble information on said feature. For example, if destroying hue information
via randomization causes performance to drop by a large amount, then we would
say hue has a high contribution for MDE.

To test the effect of destroying feature information while still maintaining
general shape information of individual objects and general spacial relationship,
we apply phase-scrambling [8] (for texture) and randomizing of hue, saturation,
and intensity (for colour) to individual objects within images. This means that
the outlines of images are maintained, but features between objects that might
tell the model how they are related in depth are randomized.

In order to obtain a working set of data, we propose an automatic pipeline
to intervene on images (Fig. 3). This pipeline consists of the following steps: a
general purpose segmentation method first segments images into individual ob-
jects, overlapping object maps are removed, and lastly independent intervention
operations are performed on a per-object basis based on the segmentation maps.

After we obtain a working dataset, we perform evaluation of the dataset
using Depth Anything [24]. We compare the prediction against its label and
calculate contribution. Depth Anything is a general purpose, transformer-based
model. We chose this model for the following reasons. First, its aim at being
general purpose means it claims to have learnt certain invariant feature links
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Fig. 3: The steps we take to create different intervened images. The images on the
right are from top to bottom: texture, hue, saturation, and intensity interventions.

applicable throughout various datasets. Second, its performance at its time of
publishing makes it an ideal candidate for testing what state-of-the-art models
learn. Third, its training method already includes image perturbations, and we
are interested if these perturbations in training have provided resistance towards
the destruction of certain features: texture and colour.

More details of our implementation are given below.

3.1 Segmentation

Segmentation of the image is performed via the general-purpose model Segment
Anything [14]. Due to the intervention operations to be performed downstream,
our method requires independent objects to be segmented away from each other.

Segment Anything returns an object masks based on a starting point. To
perform segmentation on the entire image a grid of points of interest are applied,
each returning an object map. In some cases, two or more points of interest are
placed on a single object, making their maps overlap. In these cases, we calculate
the area of overlap, and if the overlap is significant define the masks to be of the
same object, and the larger object mask is taken as the final object mask.

3.2 Intervention

Destruction of texture is done through phase-scrambling [8], which is a technique
commonly used in signal processing and psychology. This method randomizes the
phase of an image in the Fourier transform space, destroying texture information
but retaining colour information. We opted for this method instead of averaging
colour because averaging colour introduces texture information in the form of a
perfectly equal gradient.

Destruction of hue, saturation, and intensity is done through randomizing
each of these features for each individual object. This retains texture within
object since each object maintains a similar change in colour, but between objects
any depth cue given by these features would be randomized.
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Table 1: Comparison of results between original image, interventions of texture, hue,
saturation, and intensity across the whole dataset.

Image type A1 A2 A3 AbsRel log10

KITTI original 0.9545 0.9896 0.9974 0.0796 0.0342
KITTI texture 0.8107 0.9388 0.9750 0.1468 0.0660
KITTI hue 0.9485 0.9901 0.9973 0.0833 0.0358
KITTI saturation 0.9449 0.9882 0.9967 0.0845 0.0363
KITTI intensity 0.8249 0.9526 0.9826 0.1332 0.0602

NYUv2 original 0.9714 0.9957 0.9990 0.0528 0.0229
NYUv2 texture 0.8751 0.9767 0.9946 0.1102 0.0477
NYUv2 hue 0.9703 0.9951 0.9988 0.0540 0.0234
NYUv2 saturation 0.9646 0.9937 0.9987 0.0588 0.0255
NYUv2 intensity 0.9265 0.9872 0.9966 0.0834 0.0362

3.3 Evaluation

Evaluation of results will be done using five performance metrics. Accuracy
scores, which measure the fraction of pixels that falls within an acceptable thresh-
old from ground truth at 1.25, squared and cubed; absolute relative error, which
measures the absolute error between ground truth and prediction, divided by
ground truth to obtain an error measured proportionally to ground truth; and
log10 error, which measures the absolute error between the base 10 logs of pre-
diction and ground truth. We chose these metrics due to their widespread use
in existing work [4].

Once we have calculated loss metrics, we can use them to compare reduction
in performance on intervened images. The difference in performance tells us how
much the feature contributed to the model’s prediction.

3.4 Data

We used the KITTI [21] and NYUv2 [16] datasets, since they have been widely
used in outdoors and indoors studies respectively and can provide a good context
to compare with other studies. Since Depth Anything claims not to be pre-
trained with either dataset, this also makes them good for a blind baseline test.

4 Results

Tab. 1 shows a comparison of results of the raw set of images and its interven-
tions. A clear trend can be seen where hue sees the least drop in performance,
followed by saturation, and large losses can be seen in intensity and texture.
Analysis of these results follow.
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Fig. 4: Example of texture intervention.
Top: Original, Middle: Prediction, Bottom: Ground truth dense map using infill

4.1 Texture

To test the contribution of texture on MDE, we performed inference on the
phase-scrambled images of both datasets. Fig. 4 and Fig. 5 show examples of
a comparison of raw images with their destroyed texture, and resulting depth
maps. Texture appears consistently as the feature with the highest contribution.
This can be explained by looking at texture as containing local shape information
since the importance of shape has been shown in earlier works, and that it was
identified as a key depth cue in human vision in [5].

Looking at Fig. 4, it is interesting to note the modes of failure. It can be
seen that an image contains a section of road with destroyed texture. When
inferenced using ground truth, the model is successful at predicting the road as
an object with varying depth, but predicts the entire road as being of a single
depth when texture is destroyed. This also applies for other images, for example
with the backs and seats of chairs (Fig. 5).

It can also be seen that by destroying natural texture, the relationships be-
tween neighbouring objects are destroyed. Previously well predicted neighbour-
ing objects now see jumps in depth, sometimes dramatically.

Results above show the importance of texture in depth prediction, both as
depth cue and as differentiation between object boundaries.

4.2 Hue

To test the contribution of hue on MDE, we performed inference on the hue-
randomized set of images for both datasets. Hue appears consistently as the
least contributing feature within the four. This is unsurprising since the hue of
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Fig. 5: Examples of texture interventions. With image curves adjusted for visibility.
Top: Original, Bottom: Prediction

an object is rarely dramatically changed under natural and common artificial
lighting situations. The hue of an object thus contains information about the
nature of the object rather than their depth.

Looking at Fig. 6 (left) however, we can clearly see instances where hue affects
the model’s decisions on object boundaries, especially on reflective surfaces. It
is especially notable that depending on how the segmentation model segments
objects, the depth model draws different boundaries for the reflection of chairs.
This suggests that while hue in and on itself does not strongly contribute to
depth performance, its role in determining object boundaries might bring new
insight on how to improve this challenging aspect of MDE.

4.3 Saturation

To test the contribution of saturation on MDE, we performed inference on the
saturation-randomized set of images for both datasets. Saturation was the second
most contributing colour feature for both KITTI and NYUv2. We found that
in certain cases, intervening on an object and its neighbour’s saturation result
in changes to depth prediction, however this effect is not as strong as that seen
in intensity. Saturation was hypothesized to be related to shadows and aerial
perspective [5] in outdoor scenes.

There is no direct relationship between saturation and where depth prediction
increased or decreased. Looking at Fig. 6 (right), we can see cases where decrease
in distance prediction coming from both increased and decreased saturation. This
is interesting, since it suggests that the model might have learnt to use saturation
as a depth cue as a comparison tool between objects, and not just within a single
object.
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Fig. 6: Left: example of hue intervention. Right: example of saturation intervention.

4.4 Intensity

To test the contribution of intensity on MDE, we performed inference on the
intensity-randomized set of images for both datasets. Out of the three colour
features, intensity is the most contributing, although it contributes much more to
the outdoors KITTI dataset than it does in NYUv2, which matches our intuition
of strong shadows being used as depth cues in outdoor scenes.

Looking at qualitative results, it is found that in KITTI, intensity contributed
greatly to object dissection and placement, especially in scenes where a strong
vanishing point was unavailable (Fig. 7). A strong change in intensity here re-
sulted in neighbouring objects to be projected to vastly different depths. This
suggests that the model correlates a sudden change in intensity to a sudden
change in depth.

A similar trend can be seen in the NYUv2 dataset, where sudden shifts
of intensity are interpreted as a change in object occupying different depths
(Fig. 8 (left)). However we also see cases where clusters of small objects changing
intensity within themselves to not induce this behaviour, instead confounding
the depth of the cluster(Fig. 8 (right)).

5 Conclusion

5.1 summary

In this study, we built upon existing work looking at MDE through a human-
inspired angle, incorporating insights from various studies that aimed to improve
interpretability in other computer vision tasks. We analysed the effects of four
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different image features on MDE, comparing performance change and quali-
tatively analyzed the mechanics of change. We identified texture as the most
contributing features within our tested features, and have shown a stable perfor-
mance drop through the other features over both indoors and outdoors datasets,
covering questions left unanswered by existing work. We quantitatively iden-
tified different contributing features in indoors and outdoors scenes, and made
hypotheses to explain such differences, which can be extended for further studies.

Our work provides evidence that certain visual cues used by humans to iden-
tify depth are also used by machines. Such as texture density and boundary
defined by intensity and saturation. We thus provide insight on how human and
machine perception relate to each other.

By identifying the contributing features to learned relationships and their
modes of failure, our work also provide a starting point to identifying robust
features in MDE that models could be encouraged to focused on by various
learning methods.

5.2 Limitations and future work

Current work has extended to looking at surface level features such as hue, sat-
uration, and intensity, but as mentioned above it is important to use meaningful
features to represent tasks. It is yet unclear what other features other than tex-
ture, shape, and HSV contribute to MDE. Thus, work going forward could be to
extend a similar approach to features proposed by other studies, or to investigate
inner model workings to look for other possible image features or latent features
available for intervention.

The current method relies mainly on comparing overall performance with
a few intervention examples, complemented by qualitative insights. A future
direction would be to apply more robust statistical methods to further justify
current qualitative insights by categorizing the types of failures that appear
through intervention, such as by clustering data points by change of loss, or
investigating change of deviation for different interventions.

The approach above can be reinforced by or taken from existing literature on
causal discovery [17], where statistical methods can be used to identify whether
features are direct descendants of each other, or whether they share confounding
ancestors or are colliders.
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Fig. 7: Examples of intensity interventions outdoors. Note the difference in feature
contribution between the two images, one with a clear vanishing point and the other
without.

Fig. 8: Examples of intensity interventions indoors.
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