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Abstract. The lack of ground truth explanation labels is a fundamental
challenge for quantitative evaluation in explainable artificial intelligence
(XAI). This challenge becomes especially problematic when evaluation
methods have numerous hyperparameters that must be specified by the
user, as there is no ground truth to determine an optimal hyperparam-
eter selection. It is typically not feasible to do an exhaustive search of
hyperparameters so researchers typically make a normative choice based
on similar studies in the literature, which provides great flexibility for
the user. In this work, we illustrate how this flexibility can be exploited
to manipulate the evaluation outcome. We frame this manipulation as an
adversarial attack on the evaluation where seemingly innocent changes
in hyperparameter setting significantly influence the evaluation outcome.
We demonstrate the effectiveness of our manipulation across several
datasets with large changes in evaluation outcomes across several ex-
planation methods and models. Lastly, we propose a mitigation strategy
based on ranking across hyperparameters that aims to provide robust-
ness towards such manipulation. This work highlights the difficulty of
conducting reliable XAI evaluation and emphasizes the importance of a
holistic and transparent approach to evaluation in XAI. Code is available
at https://github.com/Wickstrom/quantitative-xai-manipulation.
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1 Introduction

Explainable artificial intelligence (XAI) is a crucial research area to ensure trust-
worthiness in computer vision [44], which contains a wide range of methods that
provide explanations for the output of a predictive model [7,38,53]. To determine
which XAI method is suitable for a given problem setting, quantitative evaluation
analysis is necessary to provide an objective measurement for comparison. Such
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XAI method Faithfulness score (↓)

LRP 25.19
Saliency 20.23
Kernel SHAP 23.94

XAI method Faithfulness score (↓)

LRP 19.31
Saliency 22.96
Kernel SHAP 24.87

Table 1: Faithfulness comparison of XAI methods on MNIST before (left table) and
after manipulation (right). Here, the different between the left and right table is the per-
turbation methods used (uniform noise vs. blurring, respectively). Both perturbation
methods are commonly used, but completely change the outcome of the evaluation.

quantitative analysis of XAI methods has made great leaps forward over the last
couple of years [2, 26], and generally consists of evaluating several metrics that
measure desirable properties that an XAI method should have i.e., metric-based
quality estimation [24]. However, the progress in XAI and its evaluation has led
to an overwhelming variety of methods and metrics, making it challenging for
researchers to navigate their choices [12,24,25,33].

A fundamental limitation in XAI evaluation is the lack of ground truth ex-
planation labels [24]. Since such information is generally not available, we ap-
proximate explanation quality by measuring desirable properties like faithful-
ness [4, 9, 17, 40, 41, 43], complexity [9, 16, 39], or robustness [3, 17, 37, 55] and
translate these properties into empirical tests . In this translation, a challenge
appears in the parameterization of the empirical tests. For example, how do we
mask out pixels and how large should the masks be? Preliminary works [24, 33]
have shown that the evaluation outcomes are sensitive to choices like these. This
sensitivity underscores the need to investigate the impact of hyperparameter
choice, making it an important research area to ensure the reliability of XAI
evaluations.

This challenge becomes particularly prominent for evaluation methods with
many hyperparameters that must be set, since it is generally not possible to
find an objective measure of the optimal set of hyperparameters. For instance,
faithfulness evaluations view model behavior changes as signals of explanations
quality, with substantial changes reflecting the explanations faithfulness [4, 7, 9,
17,40,43]. This type of evaluation often requires replacing pixel values with some
baseline value, which can be highly data-dependent and difficult to tune [46].
Furthermore, it can often be computationally impractical to evaluate all possible
choices for hyperparameters. Therefore, hyperparameters are usually selected
normatively with the researcher’s own subjective judgment, frequently drawing
on prior studies. Since there is variation in what hyperparameters are being used
in the community [24, 33], there is some flexibility in selecting hyperparameters
from an acceptable set of possible choices.

In this work, we demonstrate how this flexibility of XAI evaluation can be
exploited to manipulate the evaluation outcome. By making seemingly small
changes to hyperparameters that are widely used in the literature, the outcome
of the faithfulness evaluation can change completely. Tab. 1 illustrates this, where
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standard XAI methods are compared with only slight changes in hyperparam-
eters but with significant changes in evaluation outcome. We propose to frame
the finding of these small changes as an optimization problem that manipulates
the evaluation, where either the evaluation of a single XAI method is manip-
ulated or the evaluation of multiple XAI methods is manipulated jointly. Our
contributions are:

C1 A method-specific manipulation method that can increase the evaluation
score for a specific XAI method, which we entitle intra-manipulation.

C2 A holistic manipulation method that can manipulate the quantitative com-
parison of several XAI methods, which we entitle inter-manipulation.

C3 A comprehensive experimental analysis on manipulation of faithfulness eval-
uation that demonstrate how the evaluation outcome can completely change
after manipulation.

C4 Towards improving the robustness of quantitative evaluation of XAI, we
propose Mean Resilience Rank, a ranking-based procedure that reduces the
sensitivity to hyperparameter manipulation.

Our findings have significant implications for the XAI community. Quantitative
evaluation is crucial to provide objective measurements of explanation quality,
which can be used to select an appropriate method for a particular task or
for comparison in method development. If these measurements can be easily
altered, it reduces the trustworthiness of both method selection and comparison.
Therefore, the findings and solutions in this work are of critical importance for
the community both by highlighting the issue of manipulation and by presenting
strategies towards mitigating the issue.

2 Related Work

Metric-based Quality Estimation Quantitative analysis of XAI explanation has
improved considerably in recent years, and researchers now have a vast amount of
evaluation metrics at their disposal [2,26]. Due to the lack of ground truth expla-
nations, researchers try to quantify the quality of an explanation by measuring
desirable properties, which can be categorized into 6 families of properties [26];
faithfulness [10], robustness [3], localisation [51], complexity [16], randomisa-
tion [1], and axiomatic [30]. Within each family, a variety of metrics exists.

Prior Studies on Hyperparameter Sensitivity in XAI Increasing attention has
been given to the influence and potential confounding effects of hyperparam-
eters in XAI evaluations [24]. These studies vary in defining dependent versus
independent variables and the hyperparameter space of intervention, be it model,
explanation, or evaluation space. Studies have examined the sensitivity of attri-
bution methods to explanation hyperparameters like random seed and number
of samples [8], and the impact of baseline choices in methods like Integrated
Gradients on explanation outcomes [46, 49]. Additionally, the sensitivity of ex-
planation outcomes concerning model performance variables such as optimizer,
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activation function, learning rate, and dataset split has been studied [28], along
with the effects of model priors and random weight initialization on explanations
and evaluations [22]. Disagreement among different explanation methods regard-
ing top-K features and ranking has also been investigated [33], while analyzing
the impact of baselines [31].

Recently, researchers have explored how evaluation parameters affect out-
comes, including the sensitivity of randomisation metrics to hyperparameters like
normalisation, randomisation order, and similarity measures [11,25,48]. Faithful-
ness metrics have been examined for hyperparameter influences such as baseline
choice and perturbation order [12–14,20,36,42,43,52]. Unlike existing work, in-
spired by adversarial machine learning, we introduce a novel, general-purpose
manipulation approach, applicable across a variety of evaluation approaches.
Our findings reveal that faithfulness evaluation outcomes are highly susceptible
to manipulation. This is a key issue for the XAI community to address. We put
forward a preliminary mitigating solution for this in Sec. 6.

3 Preliminaries

For clarity, we present the core concepts and notation used in the work.

Local explanations Let the input to a black-box classifier f be denoted as x ∈ Rd

and the output of the classifier as f(x) = ŷ. Local explanation methods [7, 15,
45, 50] interpret the decision of f by attributing an importance score to each
component of x. We denote the explanation of f for a given class y as e ∈ Rd.

Evaluating Explanations Here, we present a generalized formulation of quanti-
tative XAI evaluation to illustrate the static input parameters and adjustable
hyperparameters. We assuming an evaluation function F → R on the form:

F (f,x, e, a, b, c) = s. (1)

Here, f , x, and e are input parameters provided by the user, while a, b, and
c are hyperparameters that must be determined by the user. The output of
the evaluation is represented by s, which is a scalar indicating the performance
of the particular explanation. Here, we keep the hyperparameters a, b, and c
completely general for the sake of clarity. But note that there could be more or
less hyperparameters and they can take many different forms (e.g. a number or
a function), depending on the particular test and the data in questions.

4 Manipulating XAI Evaluation

Here, we introduce our manipulation strategies for changing the evaluation out-
come of XAI evaluation with only small hyperparameter alterations. The moti-
vation for this approach is that there often exists several agreed-upon hyperpa-
rameters for a given XAI evaluation method. For instance, when conducting a
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faithfulness evaluation [4, 7, 9, 17, 40, 43] (see Sec. 5 for further details), an im-
portant component is perturbing input pixels. There exist numerous methods
for conducting this perturbation, and it is known that selecting a suitable one
can be challenging [12,42,46]. However, evaluating numerous such methods can
be highly computationally demanding, and due to the lack of ground truth ex-
planations we cannot decide which method is correct. Therefore, in practice, it
is common to consider only a single perturbation method [3,10,37]. However, as
we have shown in Tab. 1, even a slight change in the hyperparameter setting can
have a big impact on the evaluation. Those who are aware of this sensitivity can
potentially exploit it, which is the motivation for our manipulation strategy.

Intra-manipulation We propose two ways to manipulate XAI evaluation meth-
ods. First, we propose to focus on manipulating the evaluation outcome for a
single XAI method, which we refer to as intra-manipulation and is defined as:

Definition 1 (Intra-Manipulation). Given an evaluation function F , an
input sample x, an explanation e, hyperparameters a, b, and c, and a feasible set
of hyperparameters A∗

a for the hyperparameter a, the intra-manipulation method
solves the following optimization problem to determine the hyperparameter a,
which maximizes the evaluation score of F :

maximize
a

F (f,x, e, a, b, c)

subject to a ∈ A∗
a.

Definition 1 defines an optimization problem where the goal is to find hyper-
parameters that maximize the evaluation outcome, but are constrained to lie
within a feasible set of values (A∗

a in this case) for the hyperparameters in ques-
tions. Determining this feasible set requires a researcher’s judgment and a good
understanding of the particular XAI evaluation method that the user wants to
manipulate. But more deeply, it fundamentally depends on the model: i.e. the
feasible set is and should be dependent on the learned functional response of
the model. In Sec. 5, we further explain how to determine the feasible set. If
the feasible set is large, Definition 1 can be solved through suitable optimization
techniques. If the feasible set if small, an exhaustive search can be performed.
Also note that Definition 1 can be extended to optimize across several hyperpa-
rameters, e.g. maximizing both a and b.

Inter-manipulation Definition 1 allows for improving the evaluation outcome of a
single XAI method. But in many cases it could be desirable to alter the outcome
of the evaluation of several XAI methods. Our second manipulation approach is
to take a holistic view and manipulate the evaluation of several XAI methods
jointly. We refer to this approach as inter-manipulation and define it as:

Definition 2 (Inter-Manipulation). Given an evaluation function F , an in-
put sample x, a set of explanations {e1, · · · , eM} from M different XAI methods,
hyperparameters a, b, and c, and a feasible set of hyperparameters A∗

a for the
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hyperparameter a, the inter-manipulation method solves the following optimiza-
tion problem to determine the hyperparameter a, which maximizes the following
objective:

maximize
a

F (f,x, em, a, b, c)−
∑

m′ ̸=m

F (f,x, em′ , a, b, c)

subject to a ∈ A∗
a

.

Here, em is the explanation from the XAI method we wish to improve the per-
formance of. We entitled this method the focus method. The explanation from a
non-focus method is denoted as e′m, which we seek to worsen the performance
of. The optimization problem presented in Definition 2 is more complex com-
pared to Definition 1 due to the interplay between the different XAI methods.
For example, the optimal solution could be found by a combination of increasing
the performance of the focus-method while simultaneously decreasing the per-
formance of the non-focus methods. Similarly, as Definition 1, the optimization
problem can be solved in several ways (e.g. Bayesian optimization) and can be
extended to include several hyperparameters.

5 Manipulating Faithfulness Evaluation

Some types of XAI evaluation methods are more susceptible to manipulation
than others. For instance, localization metrics, which aims to measure if an
explanation is within a region-of-interest, usually only have 1 or even 0 hyper-
parameters to select [5,51] and are therefore harder to manipulate. On the other
hand, faithfulness metrics [3,10,39] have at least 3 hyperparameters that must be
determined, and often more. This is one of the most popular evaluation methods
in XAI [4, 7, 9, 17, 40, 43] and is therefore an important evaluation category to
study. Therefore, we will focus on manipulating faithfulness metrics. The follow-
ing section provides an overview of the fundamental components in faithfulness
evaluation.

The fundamental components of faithfulness Faithfulness measures to what ex-
tent explanations follow the predictive behavior of the model by iteratively per-
turbing the input and monitoring the corresponding change in the output of the
model. Our focus will be on the task of classification, since this is the most com-
mon setting in the context of explainability and vision. This section presents
the mathematical formulation of the general components of most faithfulness
metrics. Let S denote the set of indices {1, · · · , d} for each element in the input
sample x ∈ Rd. Partition S into K sets S1, · · · , SK of equal cardinality C and
arranged such that: ∑

i∈S1

ei ≥ · · · ≥
∑
i∈SK

ei. (2)

For convenient notation, we define the sum of attributions for one partition as:
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ẽSk
=

∑
i∈Sk

ei (3)

Inequality (2) instructs us to rank the indices according to the input features with
highest importance in a descending fashion, and are used to iteratively perturb
the input. Note that some metrics sort the indices in an ascending fashion [4,
6, 39] and some perturb the input randomly [9], but the general approach in
faithfulness metrics is to perturb the inputs according to Equation (2) [3,40,42,
43]. Let xS1 denote a perturbed version of x, where all xi for i ∈ S1 are replaced
by some baseline perturbation function gp. We denote the output of the classifier
based on xS1

as ŷS1
. For xS2

, all xi for i ∈ S1 ∪ S2 are perturbed. In general,
xSi

will have all have the indices in all sets up to set Si replaced by the baseline
perturbation function.
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Fig. 1: Example of possible faithfulness curves for digit classification. The leftmost
curve illustrates how an "intuitive" faithfulness curve might look, while the remaining
curves show that there is a lot of variation in how these curves can appear.

Illustrating the faithfulness curve Based on the K partitions of S, a set of progres-
sively more perturbed inputs can be created, i.e. {xS1

, · · · ,xSK
}. Each of the per-

turbed inputs are classified, which gives a set of model outputs {ŷS1
, · · · , ŷSK

}.
These model outputs are the fundamental components for faithfulness evalua-
tion in XAI. The rationale is that a good explanation should remove the essential
parts of an input first, which should lead to a steep drop in the classification
score. A poor explanation will remove parts that are not important, which will
allow the classification score to stay high. Figure 1a shows an example where the
classifier behaves as expected, with a sharp drop in accuracy when the important
parts of the input are removed. To compare two explanations, one can inspect
a plot such as in Figure 1a and see which explanation has the sharpest drop
in classification score. However, such a visual approach has many limitations.
First, we generally would like to compare explanations across many samples to
get a reliable estimate of how they perform. Inspecting numerous such plots
is cumbersome, and the curves can look different for different visual objects in
classification, which makes comparison challenging. Also, real-world data is not
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always as well-behaved as the plot shown in Figure 1a, as illustrated in Figures
1b and 1c. Another important aspect is that ensuring that the curve is a genuine
depiction of explanation quality and not out-of-distribution (OOD) response of
the model can be highly challenging [27,42].

5.1 Hyperparameters in Faithfulness Metrics

Here, we briefly describe the different hyperparameters that must be determined
by the user to conduct a faithfulness evaluation. It is important to note that many
of these hyperparameters are inherently data dependent, which means that the
user must re-parameterize each metric for their use case, making the results
non-comparable across different datasets and potentially models.

Size of partition The size of each partition determines how many features are re-
moved and replaced in each step of the faithfulness curve. To determine this size,
there are several considerations. First, if the size of the partition is very small
the evaluation will quickly become computationally infeasible, since the number
of forward passes for each sample increases. Furthermore, removing only a single
or a few pixels at a time can lead to adversarial effects [47]. Second, a large
partition size will lead to course faithfulness curves which makes comparison
between curves challenging. Therefore, there is a trade-off between computa-
tional efficiency and resolution of the faithfulness curves. Some researchers use
the height and width of the image (assuming square images) as the size of the
partition [26], but other choices are also common [7,53].

Perturbation Function When a set of features are removed from an image, they
are replaced by some perturbation function. An example of such a perturbation
function could be Gaussian noise or setting pixel values to zero [3,37], but more
advanced approaches are also available [41]. The type of perturbation function
to apply is highly dependent on the type of images that are being considered. For
example, replacing pixels with a value of zero can be possible for natural images
[21] but would not be a suitable choice for images with a black background, since
this could potentially not induce a change in the network’s output. In general,
the choice of perturbation function varies greatly between papers [3, 10,37,41].

Aggregation Function Examples in Figures 1b and 1c, demonstrate that it can
be difficult to assess which explanation is superior. Therefore, it is desirable to
aggregate the perturbed model outputs into a single score that can be easily
used for comparison using an aggregation function ga. There are two main ap-
proaches to aggregate the curves shown in Figure 1. The first approach is to
calculate the AUC of the faithfulness curve [7, 42, 43]. A low AUC is considered
desirable, since it indicates that the important components of an input are re-
moved first. The second approach is to correlate the model outputs with the sum
of attributions within each partition [4, 9]. The motivation for this approach is
that when important parts of an object are removed the predictive performance
should gradually decrease, which will be captured by the correlation functions.
Both correlation and AUC are used regularly in the literature [3, 7, 10,37,40].
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Normalization Function Attributions produced by different XAI methods can
have a widely different range of values. Therefore, it can be necessary to nor-
malize the attributions such that they are comparable across different methods.
A simple choice could be to standardize using the mean and standard deviation
of the attributions. But choices such as these can influence evaluations [24] and
more sophisticated normalization schemes are also used [11].

6 Towards More Reliable Quantitative Evaluation with
Mean Resilience Rank

Due to the lack of ground truth explanations, we cannot determine what setting
of hyperparameters constitutes the "correct" choice. However, we do know that
it is desirable to perform well across all hyperparameter settings. Therefore, if
an XAI method consistently appears among the highest-ranked methods across
numerous hyperparameters, it provides an indication of high quality with less
sensitivity to hyperparameters. Thus, to provide robustness towards hyperpa-
rameter manipulation, we propose to rank each XAI method for each hyperpa-
rameter setting in the feasible set, and average the ranking across the entire set.
We will refer to this ranking-approach as Mean Resilience Rank (MRR).

Here, we describe mathematically how to perform this ranking. First, assume
we want to evaluate M explanation methods, and that we only have a single
hyperparameter a with a feasible set of values A∗

a that can be altered. We denote
one element of A∗

a as ai, such that the evaluation outcome for all M XAI methods
can be collected in the set:

SF (ai) = {F (f,x, e1, ai, b, c), · · · , F (f,x, eM , ai, b, c)} . (4)

Then, we define a function R(·) that takes in a set of scores and outputs a vector
with integer elements, where 0 indicates the lowest score within the set and M−1
indicates the highest score within the set. Finally, we define the outpout of the
MMR as the following ranking vector:

r =
1

|A∗
a|

∑
ai∈A∗

a

R(SF (ai))

M
. (5)

For clarity, we have focused on a single hyperparameter, but Eq. (5) can easily
be extended to several hyperparameters. For evaluation methods where a high
value is desirable, a high ranking indicates good performance, and vice versa for
evaluation methods where a low value is desirable.

7 Experimental Setup

We evaluate our manipulation strategy across numerous datasets, models, and
XAI methods, which are described below. We also define the feasible sets used
in our manipulation methods.
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Models and Datasets: We examine several widely used computer vision datasets;
MNIST [19], FashionMNIST [54], PneumoniaMNIST [29], and ImageNet [18],
and two common deep learning architectures: LeNet [34] and ResNet18 [23]. The
LeNet is used for classifying MNIST, FashionMNIST, and PneumoniaMNIST,
while the Resnet18 is used for classifying ImageNet. For ImageNet, we ran-
domly sample 100 samples to conduct the faithfulness evaluation, for Pneumo-
niaMNIST we use 500 samples, and for the remaining datasets we use 1000
samples. We choose 100 samples for ImageNet because the larger size of these
images increases the computational complexity. We choose 500 for Pneumoni-
aMNIST as it does not have 1000 samples in its test set.

XAI Methods: We investigate the following XAI methods; Layer-wise relevance
propagation (LRP) [7], Saliency [38], and KernelSHAP [35] using the captum
library [32]. We have picked these three methods as they represent common
choices in the XAI field, and we have focused on only three methods to provide
a clear experimental analysis without overloading the reader.

7.1 Defining the Feasible Set of Hyperparameters for Faithfulness

A critical aspect of the manipulation methods outlined in Sec. 4 is to determine
the feasible set of hyperparameters. This requires in-depth knowledge of the
family of quantitative metrics that we aim to manipulate. In this work, we focus
on the faithfulness family of evaluation metrics and the critical hyperparamters
outlines in Sec. 5.1. We focus on a subset of hyperparameters to provide a clear
and understandable evaluation of our manipulation strategies. The feasible set
of hyperparameters considered in this work are shown in Tab. 2. This selection
is based on common choices in the literature for partition size [7, 15, 24, 26,
53], perturbation function [3, 40,46], and normalization function [10,11,24]. We
consider the aggregation function fixed as AUC aggregation, which means that
a lower faithfulness score is better. Specifically, we compute the AUC of the
faithfulness curve from the set of perturbed model outputs {ŷS1

, · · · , ŷSK
}.

MNIST FashionMNIST PneumMNIST ImageNet

Partition size {14, 28, 56} {14, 28, 56} {14, 28, 56} {112, 224, 448}
Perturbation: {N (0, 1), U(0, 1), G(·)} {N (0, 1), U(0, 1), G(·)} {N (0, 1), U(0, 1), G(·)} {N (0, 1), U(0, 1), G(·)}
Normalization {True, False} {True, False} {True, False} {True, False}

Table 2: The feasible set of hyperparameter considered in this work for different
datasets. G(·) denotes Gaussian blurring.

8 Results

Here we present the results of performing our proposed inter-manipulation and
intra-manipulation. In both cases, we survey the literature and create what
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MNIST FashionMNIST PneumMNIST ImageNet
XAI method base manip. base manip. base manip. base manip.

LRP 25.20 7.86 21.46 5.37 21.31 6.06 129.61 41.48
Saliency 20.23 6.80 15.65 4.72 23.28 4.23 124.93 37.53
KernelSHAP 23.94 8.01 18.28 4.81 22.06 4.29 128.72 40.14

Table 3: Intra-results across several datasets and methods. Lower is better.

we call the base set of hyperparameters. The base set of hyperparameters for
MNIST, FashionMNIST, and PneumoniaMNIST is a partition size of 28, uni-
form noise as perturbations, and no normalization. For ImageNet, the base set of
hyperparameters is a partition size of 224, uniform noise as perturbations, and
no normalization. After manipulation using Definition 1 and Definition 2, we will
obtain a new set of hyperparameters that we refer to as the manipulated set of
hyperparameters. Our results are centered around comparing the performance
of the base set and the manipulated set.

8.1 Intra-Manipulation Results

Tab. 3 shows the results of performing the intra-manipulation proposed in Defini-
tion 1, where base is the score obtained with the selected set of hyperparameters
described above and manipulated is the score obtained after manipulation. These
results demonstrate that there is much room for changing the evaluation out-
come for a single XAI method, in some cases as much as a 130 % improvement
from the base to the manipulated evaluation outcome. Note that the manipulated
scores are not directly comparable, since the manipulation is performed method-
wise and the hyperparameters can be different. Therefore, the inter-manipulation
shown in the next section must be used to alter the outcome of an evaluation
across methods.

8.2 Inter-Manipulation Results

Tab. 4, Tab. 5, and Tab. 6 show the results of performing the inter-manipulation
proposed in Definition 2, where the scores are manipulated towards LRP, Saliency,
and KernelSHAP, respectively. For some tasks, the evaluation outcome can be
manipulated such that most of the three methods achieves the best performance.
This is particularly apparent for PneumoniaMNIST, where all XAI methods can
achieve the best performance after manipulation. For some datasets there is less
room for manipulation. This is most clear from the ImageNet results. That said,
the evaluation difference between explanation methods can still be reduced and
thus make the XAI evaluation findings less conclusive (see e.g. Imagenet results
in Tab. 6). In Appendix A, we provide a summary of the amount of times each
hyperparameter occurs in the manipulated set.
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MNIST FashionMNIST PneumMNIST ImageNet
XAI method base manip. base manip. base manip. base manip.

LRP 25.19 37.79 21.46 35.42 21.31 43.53 129.61 128.02
Saliency 20.23 46.23 15.65 34.75 23.28 47.42 124.93 123.93
KernelSHAP 23.94 50.77 21.45 41.42 22.06 45.30 128.72 131.97

Table 4: Inter-results with manipulation towards LRP. Lower is better.

MNIST FashionMNIST PneumMNIST ImageNet
XAI method base manip. base manip. base manip. base manip.

LRP 25.19 51.41 21.46 43.80 21.31 25.86 129.61 167.14
Saliency 20.23 41.57 15.65 31.83 23.28 19.61 124.93 147.56
KernelSHAP 23.94 49.25 21.45 37.36 22.06 19.99 128.72 167.74

Table 5: Inter-results with manipulation towards Saliency. Lower is better.

8.3 Towards More Robust Faithfulness Evaluation

The results in Tab. 3, Tab. 4, Tab. 5, and Tab. 6, demonstrate that the evaluation
outcome can be manipulated and can not be trusted, which reduces the trust-
worthiness of the quantitative evaluation. Here, we display the results of using
MRR described in Sec. 6 towards mitigating the potential for manipulation.

Tab. 7 displays the results of this ranking procedure, which shows that the
top-performing XAI methods change between datasets. However, if we average
the ranking across all datasets, LRP comes out as the top-performing method
closely followed by KernelSHAP, while Saliency seems to be consistently ranked
lower. But note that there is notable variation in the scores, which we further
illuminate in Fig. 2. The benefit of this ranking approach is that there is little
room for manipulation since the top-performing methods will have to perform
well across numerous hyperparameters and datasets. The downside of this rank-
ing approach is that it requires a significant amount of computation to calculate
the scores for all methods across all hyperparameters and datasets. Also, while
averaging across datasets can provide robustness, it can also obfuscate impor-
tant insights from a particular dataset. Therefore, it is important to include the
dataset-wise ranking such that readers can get an overview of the evaluation.

MNIST FashionMNIST PneumMNIST ImageNet
XAI method base manip. base manip. base manip. base manip.

LRP 25.19 12.07 21.46 43.80 21.31 26.42 129.61 74.93
Saliency 20.23 9.72 15.65 31.83 23.28 19.95 124.93 74.21
KernelSHAP 23.94 11.53 21.45 37.36 22.06 19.55 128.72 74.66

Table 6: Inter-results with manipulation towards KernelSHAP. Lower is better.
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XAI method MNIST FashionMNIST PneumMNIST ImageNet All

LRP 0.22 ± 0.15 0.33 ± 0.00 0.21 ± 0.00 0.26 ± 0.00 0.29 ± 0.14
Saliency 0.41 ± 0.26 0.44 ± 0.31 0.37 ± 0.31 0.41 ± 0.33 0.41 ± 0.30
KernelSHAP 0.37 ± 0.33 0.22 ± 0.31 0.33 ± 0.27 0.33 ± 0.06 0.31 ± 0.31

Table 7: MRR across feasible set for each dataset and across datasets (last column).
Lower is better, a rank of 0 is best and 1 is worst. Results show that the top performing
method can change significantly between datasets, but when averaging across datasets
LRP and KernelSHAP are highlighted as consistently higher ranked than Saliency.

Fig. 2 shows the faithfulness score for each configuration in the feasible set
for each dataset. This plot illustrates that the average faithfulness score across
the feasible set can often be quite close. However, there is large spread in the
scores, which is present for all datasets. This spread demonstrates the lack of
robustness in the faithfulness evaluation and is part of the reason why manipu-
lation is possible in this case. But, that alone would not be enough to allow for
manipulation, since the different methods could have the same change in scores
for different set of hyperparameters. However, the large standard deviation in
Tab. 7 shows that is not the case, since the ranking change between sets of hy-
perparameters. In other words, the XAI methods react differently to different
sets of hyperparameters. This, in combination with the variation shown in Fig. 2,
is what allows for manipulation in this study.

Fig. 2: Box plot showing faithfulness scores across all hyperparameter configurations in
the feasible set for each dataset. The plot illustrates that the average faithfulness score
is similar between different XAI methods across datasets. However the high variance
enables a target manipulation. Note that the scores have been normalized dataset-wise
by the highest score to allow for comparison across datasets.
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9 Discussion and Limitations

The hyperparameters described in Sec. 7.1 could be extended to include other
important choices such as the order of perturbation, i.e., descending or ascend-
ing [43] and the type of normalization function applied [11]. Also, in all our ex-
periments we repeatedly perturb the input until the entire image is perturbed,
which is the standard approach in faithfulness analysis. However, when the ma-
jority of pixels are removed there is danger of OOD effects (see e.g. Fig. 1), which
can influence the evaluation outcome [22]. An alternative approach would be to
only perturb parts of an image to avoid such OOD effects. One example is to
perturb until the prediction changes and then stop [7]. But this introduces yet
another hyperparamter, which further increases the scope for manipulation.

Our proposed MRR is a simple approach to combat the problem of manipu-
lation, but it also has drawbacks. Most prominently, the computational cost rises
quickly when more methods and hyperparameters are considered. Also, MMR
requires domain expertise to determine the feasible set of hyperparameters. If the
selection of the feasible set is done incorrectly, it might exacerbate the problem
of manipulation since it can increase the amount of hyperparameters to choose
from. MRR is also a ranking-based approach, where the scores depend on the
set of explanation methods used in the analysis, including the cardinality of that
set. Since the rankings are relative, they do not allow for meaningful compar-
isons across different tasks. To address this, we propose creating an open-source
database, leveraging tools like Quantus [26] and OpenXAI [2], to efficiently store
and standardise benchmarking results, thereby supporting researchers with the
development and XAI evaluation. For future work, we further aim to expand the
parameter sensitivity analysis to other families of quantitative measures such as
randomisation [1,25] and robustness [3,17,55] which rely on parameters such as
segmentation masks and noise perturbation methods, respectively.

10 Conclusion

We have presented two general-purpose methods for manipulating the quanti-
tative evaluation of explanation methods. Intra-manipulation which increases
the performance of a single method and inter-manipulation which manipulates
a comparative analysis of XAI methods. The motivation for these methods is
based on the lack of ground truth explanations, which makes the selection of hy-
perparameters in quantitative evaluation for XAI challenging. We demonstrate
the effectiveness of our manipulation strategies across numerous vision datasets
and XAI methods for faithfulness metrics, with results indicating that there is
significant room for manipulation of the evaluation outcome. This has potentially
big implications for the XAI community, as it shows that evaluation outcomes
cannot always be "taken at face value" and therefore, trusted. Lastly, we present
a new ranking-based procedure that aims to improve the reliability of quanti-
tative evaluation of XAI. We believe that this work highlights the difficulty of
conducting reliable XAI evaluation and emphasizes the importance of a holistic
and transparent approach to evaluation in XAI.
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