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Abstract

Deep learning models have achieved remarkable success in
computer vision tasks, yet their decision-making processes
remain largely opaque, limiting their adoption especially in
safety-critical applications. While Class Activation Maps
(CAMs) have emerged as a prominent solution for visual
explanation, existing methods suffer from a fundamental lim-
itation: they produce single, consolidated explanations lead-
ing to “explanatory tunnel vision.” Current CAM methods
fail to capture the rich, multi-faceted reasoning that under-
lies model predictions, particularly in complex scenes with
multiple objects or intricate visual relationships. We intro-
duce the Gram-Schmidt Feature Reduction Class Activation
Map (GFR-CAM), a novel gradient-free framework that over-
comes this limitation through hierarchical feature decompo-
sition that provides a more holistic view of the architecture’s
explanatory power. Unlike existing feature reduction meth-
ods that rely on Principal Component Analysis (PCA) and
generate a single dominant explanation, GFR-CAM lever-
ages Gram-Schmidt orthogonalization to systematically ex-
tract a sequence of orthogonal, information rich components
from model feature maps. The subsequent orthogonal com-
ponents are shown to be meaningful explanations, not mere
noise, that decomposes single objects into semantic parts
and systematically disentangles multi-object scenes to iden-
tify co-existing entities. We show that GFR-CAM applied
to ResNet-50 and Swin Transformer architectures across
ImageNet and PASCAL VOC datasets achieves competitive
performance with state-of-the-art methods.

1. Introduction

Deep architectures such as Convolutional Neural Networks
(CNNs) [10, 19], and vision transformers [7, 31] have
revolutionized computer vision by achieving remarkable
performance on tasks ranging from visual object detection
to video object tracking. However, these models [6, 14, 30]
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Figure 1. GFR-CAM integrated within a CNN. GFR-CAM uses
Gram-Schmidt orthogonalization to generate a hierarchical expla-
nation, sequentially identifying the primary object (Component 1)
and distinct secondary objects (Components 2 and 3) to provide a
disentangled hierarchical view of the model’s explainability.

often remain opaque “black boxes,” providing little
insight into the decision-making processes behind their
predictions [21, 24, 54]. In safety-critical domains such
as medical diagnostics [32, 45], autonomous and control
systems [2, 49, 52], and manufacturing [42, 55], this lack
of interpretability remains a significant barrier, driving
the need for methods that can reliably explain the inner
workings of these complex models. We were motivated
by our own applications that could benefit from improved
deep architecture explainability, including malaria infection
red blood cell segmentation [46], histopathology [3], aerial
vehicle tracking [28, 39], vessel segmentation [48], and
analysis of carbon nanotube properties [37, 38, 44] and
growth rates [35, 40].



Class Activation Maps (CAM) [54] have emerged as a
leading approach to this challenge, visually highlighting im-
age regions that influence a model’s output [15, 39]. While
early methods relied on gradients (e.g., Grad-CAM[41]),
a new class of more robust, gradient-free techniques has
gained prominence. Methods like Eigen-CAM [27] and
Kernel-PCA CAM (KPCA-CAM) [18] leverage powerful
decomposition techniques such as Principal Component
Analysis (PCA) [22] and its nonlinear extension, Kernel
PCA [25]. By directly analyzing convolutional feature maps,
these methods produce clean explanations without gradient-
related noise and vanishing gradient issues.

However, despite their advancements, these state-of-the-
art decomposition methods [1, 11, 26, 43] share a fundamen-
tal limitation: they are designed to produce a single, consoli-
dated explanation. By projecting all feature map information
onto a single principal component, they generate a mono-
lithic heatmap that captures only the most dominant evidence
for a prediction. This ’winner-takes-all” approach creates
a form of explanatory tunnel vision. In multi-object scenes,
it highlights one object while ignoring others that may be
relevant to the model’s overall understanding. For single-
object images, it obscures the rich visual subtext”—crucial
secondary features like texture, context, or distinct object
parts—that are essential for a complete and robust interpre-
tation of the model’s reasoning.

This limitation is a direct consequence of the feature
reduction techniques employed. PCA and its variants are
designed to find the single direction of maximum variance;
subsequent components, by definition, capture progressively
less information and often represent noise rather than mean-
ingful, distinct concepts. The core challenge, therefore, is
not to simply find the best single explanation, but to de-
compose the feature space into a hierarchy of interpretable
parts. To achieve this, we move away from PCA and turn to
a different, theoretically-grounded decomposition method:
Gram-Schmidt orthogonalization [50, 51, 53]. Unlike PCA,
the Gram-Schmidt process is explicitly designed to construct
a set of linearly independent basis vectors. This inherent
property makes it an ideal candidate for systematically ex-
tracting a sequence of distinct, information-rich, and non-
redundant components from the feature space, paving the
way for a multi-faceted explanation.

Building on this foundation, we introduce the Gram-
Schmidt Feature Reduction Class Activation Map (GFR-
CAM), a novel framework that leverages Gram-Schmidt or-
thogonalization to deconstruct a model’s reasoning into a
hierarchy of visual evidence. As illustrated in Figure I,
GFR-CAM analyzes the final convolutional feature maps to
generate a sequence of activation maps. The first component
reliably identifies the primary evidence, achieving perfor-

mance competitive with state-of-the-art methods. However,
the true innovation lies in the subsequent components. Be-
cause the Gram-Schmidt process isolates linearly indepen-
dent and information-rich features, the second, third, and
further activations are not noise; they are meaningful expla-
nations that solve the tunnel vision problem. In single-object
images, they isolate supporting evidence like texture and
distinct parts. In multi-object scenes, they systematically
disentangle the visual field, identifying co-existing objects
one by one to reveal a comprehensive scene understanding
that monolithic CAMs cannot provide.

Our contributions are threefold:

* We introduce GFR-CAM, a novel, gradient-free, and com-
putationally efficient CAM framework built on Gram-
Schmidt orthogonalization, which is theoretically suited
for hierarchical feature decomposition.

* We demonstrate that GFR-CAM overcomes the single-
explanation limitation of existing methods by generating a
hierarchy of interpretable activation maps. We show that
its subsequent components are not noise but instead reveal
secondary features, contextual clues, and distinct objects
in complex scenes.

* Through extensive quantitative and qualitative evaluation
across multiple models and rigorous benchmarks, we
prove that GFR-CAM provides a more complete and dis-
entangled understanding of a model’s decision-making,
particularly in complex, multi-object scenes, thereby set-
ting a new standard for comprehensive Al explanation.

2. Methodology

In this section, we present the Gram-Schmidt Class Ac-

tivation Maps (GFR-CAM) framework. Our method en-

hances class activation maps for interpretability using Gram-

Schmidt orthogonalization and feature reduction [50, 53].

This approach identifies discriminative image regions with

higher precision and reduced redundancy, revealing the

model’s hierarchical visual evidence.

The overall GFR-CAM workflow is summarized as fol-
lows (see Figure 1). The key innovation is in Step 3, where
hierarchical, orthogonal components are generated to pro-
duce a sequence of interpretable activation maps:

1. Feature Extraction: Extract the feature maps {A*}£
from the final convolutional layer of a pre-trained CNN
or Vision Transformer (ViT) for a given input image.

2. Data Preparation: Reshape the feature maps into a ma-
trix F' € REXL where K is the number of channels and
L = H x W is the product of the spatial dimensions.

3. Hierarchical Component Generation: Apply the Gram-
Schmidt Functional Reduction (GFR) procedure (de-
tailed in Section 3.2) to the feature matrix F'. This it-
eratively computes a set of orthogonal direction vectors
{v1,va, ..., vy} and their corresponding activation maps
{My, Ms,...,Mp}.
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Figure 2. Schematic overview of the GFR-CAM framework. It begins with a family of functions and independent CNN feature samples,
iteratively replacing fixed parameters with linear data projections, orthogonalizing the functions, and subtracting their contributions to obtain
anew random variable d; = X — Zfeﬁ(zl,...,zj) E[X f]f at iteration j. Each d; yields a covariance matrix X1 = E[d;(X)d;(X)T],
whose largest eigenvector v; indicates the direction of maximum variance for the next feature to be extracted [50, 53].

4. Post-processing: Normalize each M; to [0,1], then up-
sample to original image size via bilinear interpolation.

5. Visualization: Overlay each processed map onto the
original image to generate sequential explanations.

In what follows, we first describe the foundational orthog-
onalization algorithm before detailing how it is employed
within the GFR procedure to generate our hierarchical GFR-
CAMs.

2.1. Gram-Schmidt Orthogonalization:  Core

Mechanism

The foundation of our method is the Gram-Schmidt process,
which we use to systematically decompose the CNN/Vit’s
feature space. This process is formalized in Algorithm 1. At
each iteration j, the algorithm takes a new feature compo-
nent Z; and makes it orthogonal to all previously computed
components. This is achieved by subtracting its projection
onto the already-orthogonalized function set 7 (Line 4) and
then normalizing the result (Line 5).

This process can be concisely represented by the classical
Gram-Schmidt projection formula. For a new component Z;
and a set of existing orthonormal components {Zz}z;ll , the
orthogonalization is:

i-1 >
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where Z; is the orthogonalized component and Z ; 18 its nor-
malized version. A critical output of Algorithm | is the
residual covariance matrix ;4 (Line 9). This matrix cap-
tures the variance structure of the data after the information
from the first j components has been removed, which is es-
sential for finding the next most important feature direction.

2.2. Hierarchical Activation Map Generation with
GFR

We operationalize the orthogonalization process using Gram-
Schmidt Functional Reduction (GFR), as detailed in Algo-

Algorithm 1: Orthogonalize(F (71, . . .
F(z;-n),{Zi}i_1)
Input:
« F(Zi,...,Z;_1): an orthogonalized function family in
random variables Zy,..., Z;_;.
* F(z5) \ F(zj—1)): all the functions in F(z) which
depend on z(;] but not only on z[;_.

Zi1), Flz)\

* {Z;})_,: the random variables Zy, ..., Z;_;.
* Z;: anew random variable.

Output:

+ Orthogonalized function family F(Zy, ..., Z;)

* A covariance matrix X, 1.
1 Initialize: 7 < F(Zy,...,Z;_1). Denote
Fla) \ Flayj-n)) £ {f1(2), ..., fe(2)},

where f1(z) = z;.

2 for k < 1to ¢ do
3 g(Zl,...,Zj) <_fk7(Zla"'7Zj)'
4 g(Zl,...,Z]‘)(—
g(Zla"'azj) 7Zfe7‘]E[gf]f;
(Z 1"'7Z.i)
5 g(Zl,...,Zj) $— IEg[g(;h...,ZjV].
6 | T« TU{g(Z,....Z;)}
7 Define F(Zy,...,7Z;) =T.
8 Define d;(X) = X — > . E[X[]f.

o

Define ;11 = E[d;(X)d] (X)].
10 Return £, 7.

rithm 2, to produce our sequence of activation maps.

The GFR algorithm iteratively identifies orthogonal com-
ponents that maximize variance. At each step 7, it finds
the principal eigenvector v; of the current (residual) covari-
ance matrix XJ;. This eigenvector represents the direction of
maximum variance in the information that has not yet been
explained by previous components.



Algorithm 2: Gram-Schmidt Functional Reduction
(GFR) for GFR-CAM
Input: Random variable X taken from feature maps
F ¢ REX(HW) function family F(z), and
threshold € > 0.
Output: Orthogonal activation maps { M;}7 ;.
1 Initialize: ¥, « E[XXT].
2 for j < 1to K do

3 vj < arg |IzI/1|\an1 IADIIY
4 if V;Ejyj < €2 then
5 | break.

6 Z]' <— XTVJ'.

7 M; < reshape(Z;, H,W).

s | B F(Zp) <
Orthogonalize(X;, F(Z};_1)), F(z;) \
‘F(Z[J’—l})v{Zz’}gz1)~

Return {1/} };”:1

o

Primary Activation Map ()M): The first activation map,
analogous to the output of Eigen-CAM, is generated by
projecting the feature maps F' onto the principal eigenvector
vy of their covariance matrix ¥ = E[X X T]. This map, M1,
highlights the most dominant visual evidence for the model’s
prediction:

M 1 = F TI/1 (2)

Subsequent Activation Maps (};): Beyond the primary
map, subsequent maps are generated by iteratively applying
the Gram Schmidt algorithm. For each new map M;, the
algorithm first projects out the information captured by pre-
vious components (1, . .., v;_1). It then finds the principal
eigenvector v; of the remaining data. This vector is guaran-
teed to be orthogonal to its predecessors and thus highlights
anew, independent facet of the model’s reasoning, visualized
as:

M i = F Tl/j (3)

This iterative decomposition continues until the residual
variance is negligible (below ¢), providing a richer, multi-
faceted explanation that goes beyond the single focus of
existing methods.

3. Experiment Results

Our comprehensive evaluation is twofold. First, we establish
GFR-CAM’s primary component as a competitive baseline
by benchmarking it against state-of-the-art methods across
diverse architectures and metrics, including ROAD. Second,
and more critically, we demonstrate its unique explanatory
power by analyzing its subsequent components. We show
qualitatively and quantitatively how GFR-CAM surpasses

other decompositional methods in providing richer, more
disentangled explanations, particularly for complex scenes.
The results confirm that GFR-CAM is not only a competitive
general-purpose CAM but also offers a superior method
for generating multi-faceted, interpretable insights into a
model’s reasoning.

3.1. Experimental Setup

Models and Datasets. We conduct a comprehensive evalu-
ation on two representative architectures: ResNet-50 [13], a
standard CNN, and the Swin Transformer [20]. For ResNet-
50, feature maps are extracted from the final convolutional
block (Layer4), while for Swin-T, we use the output of the
last normalization layer in the final stage. Our evaluation
is performed on two standard benchmarks: a 5,000-image
subset of the ImageNet (ILSVRC2012) validation set [36]
(1,000 classes) and a 4,000-image subset from PASCAL
VOC 2012 [9] (20 classes). For preprocessing, all images
are resized and center-cropped to 224 x 224 pixels and nor-
malized using the standard ImageNet mean and STD.

Evaluation Metrics. To assess the quality of the generated
CAMs, we employ a standard suite of metrics that measure
an explanation’s faithfulness and interpretability [5, 17, 29].
Faithfulness is measured by quantifying the change in model
confidence as regions identified by the CAM are manipulated.
Specifically, we use the following six established metrics.
Average Drop (AD) [5] measures the average percentage
drop in confidence when only the region highlighted by the
CAM is provided as input. A lower AD is better, indicating
the map preserves class-discriminative features:

1 Y max(0, y§ — of)

AD = — x 100 4)

i=1

Here, y§ and of are the model’s confidence scores for class ¢
on the original image and the explanation-preserved image,
respectively.

Coherency (Coh) [29] measures the stability of an explana-
tion by calculating the Pearson correlation between the orig-
inal heatmap and a heatmap generated from the explanation
itself. Higher values indicate more consistent explanations:

Coh(z) 1COV(HC(:L‘ ® H.(z)), Hc(x)) . 1
oh(z) = = Z
2 TH, (20 Ho()) THe@)

(&)

where H,(-) is the CAM generation function, ® is element-
wise multiplication, and Cov(-,-) denotes the covariance
between two random variables.

Complexity (Com) [29] measures the sparsity of an expla-
nation via its L; norm. Lower complexity signifies a more
focused and simpler explanation:

Com(z) = [|Hc(x)|1



Average Drop, Coherency, and Complexity (ADCC) [29]
is a unified metric combining the above via their harmonic
mean. A higher ADCC score indicates a better overall bal-
ance of explanation qualities:

1 1 1 -1
1—AD+Coh+1—Com> ©

Increase in Confidence (IC) [5] measures the percentage
of images for which the model’s confidence increases when
shown only the CAM-highlighted region:

ADCC =3 <

N
1
IC = ;H(yf < 0f) x 100 (7

Here, I(-) is the indicator function, and y5 and of are the con-
fidences for the original and explanation-preserving images,
respectively.

Average Drop in Deletion (ADD) [17] measures the drop
in model confidence when the CAM-highlighted region is
removed from the image. A higher ADD is better, as it
indicates the removed region was critical to the prediction:

N
1 max (0, y§ — df)
ADD = — — 1t x1 8
~ ;:1 v x 100 (8)

Here, y{ is the original confidence and df is the confidence
after deleting the highlighted pixels.

3.2. Evaluation of the Primary GFR-CAM Compo-
nent against General CAM Baselines

In this section, we validate the effectiveness of our GFR-
CAM by evaluating its primary component, which captures
the most salient features identified by the model. We bench-
mark its performance against a comprehensive set of state-
of-the-art CAM methods. These include gradient-based
approaches like Grad-CAM [41], Grad-CAM++ [5], and
XGradCAM [12]; and other notable techniques including
LayerCAM [16], HiResCAM [8], KPCA CAM [18], and
ShapleyCAM [4]. The comparison is conducted on two
distinct architectures: ResNet-50 on a subset of the Ima-
geNet validation set and the Swin Transformer on a subset
of PASCAL VOC. The quantitative results demonstrate that
GFR-CAM’s primary component achieves performance that
is highly competitive with these leading baselines.

Qualitative Evaluation of Visual Explanations: In our
qualitative analysis, we employ ResNet-50 as the backbone
network and generate visual explanations using its final con-
volutional layer. As depicted in Figure 3, GFR-CAM pro-
duces the most comprehensive activation maps in compari-
son to other methods. Grad-CAM struggles to identify the

main target objects, often highlighting irrelevant regions,
while both KPCA-CAM and Grad-CAM-++ correctly local-
ize the objects. However, our method exceeds these ap-
proaches in accurately pinpointing the relevant regions.

Performance on ResNet-50: Table | presents the results
on the ResNet-50 architecture with ImageNet data. Our GFR-
CAM demonstrates excellent faithfulness to the model’s
decision-making, achieving the best scores in Average Drop
(11.17), Increase in Confidence (43.31), and ADD (45.57).
This indicates that the primary GFR-CAM component is
highly effective at identifying the most critical regions for
the model’s prediction. While Shapley-based methods excel
in Coherency and ADCC, our method provides a competitive
performance on the core faithfulness metrics, establishing it
as a highly competitive CAM.

Table 1. Quantitative comparison of CAM methods on ResNet-50:
leveraging the final convolutional layer

Method AD| Coh{ Com{ ADCC?t ICt ADD?
GradCAM 1273 8812 4013 6722 4197 44.19
GradCAM++[5] 1379 9649 4822 7123 4285 37.02
HiResCAM 1435 6174 2049 507 4052 4371
ShapleyCAM-E 1228 9843 4127 8259 3933 3623
KPCA CAM 1398 9021 3567 1623 4001 41.11
ShapleyCAM 1175 8936 3958 8374 3829 4357

GFRCAM (Ours) 11.17 91.74 3091 20.27 4331 4557

Performance on Swin Transformer. In Table 2, the eval-
uation on the Swin Transformer with PASCAL VOC data
further confirms the robustness of GFR-CAM on non-CNN
architectures. Our method achieves top performance in Com-
plexity (32.81) and ADD (27.43), producing maps that are
both informative and sparse. It also remains highly com-
petitive in Coherency (62.17), closely following the leading
method, ShapleyCAM. GFR-CAM demonstrates robust per-
formance, achieving state-of-the-art results in Complexity
and ADD while remaining competitive in other key metrics
like Coherency. This solidifies its efficacy as a general-
purpose explanation method, applicable to diverse model
architectures.

Table 2. Quantitative comparison of CAM methods on the Swin
Transformer: targeting the initial normalization layer in the final
transformer block

Method AD| Coht Com] ADCC+ ICT ADDT
GradCAM 5776 4138 2377 616 545  23.17
GradCAM++ 68.15 49.67  25.03 365 1242 2485

XGradCAM[12]  83.73 5048  31.63 4.06 2171 19.58
LayerCAM[16] 7128 5894  28.26 5.17 - -

HiResCAM 82.54 5148 17.25 6.19 2512 2145
ShapleyCAM 6722 6493 30.20 7.49 1742 27.18

GFRCAM (Ours) 7239 62.17  32.81 6.53 13.82 2743
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Figure 3. Qualitative comparison of CAM methods on a ResNet-50 model. The figure demonstrates that our proposed GFR-CAM generates
more precise and comprehensive activation maps, accurately localizing target objects compared to other leading methods.

RemOve And Debias (ROAD) Benchmark [34]: The
ROAD framework provides an efficient evaluation strategy
for attribution methods by measuring how well saliency
maps identify relevant features. The metric is defined as:

ROAD = % (LeRF — MoRF) 9)

where LeRF and MoRF represent model confidence scores
after perturbing least and most relevant features respectively.
ROAD employs a perturbation scheme that removes fea-
tures in order of importance (MoRF: Most Relevant First;
LeRF: Least Relevant First) and uses linear imputation with
neighbor-weighted interpolation to fill perturbed regions. A
more effective attribution map will identify features that
cause a rapid degradation in performance, resulting in a
lower Area Under the Curve (AUC) of the performance
curve. Therefore, for this benchmark, a lower score is better,
signifying a more accurate identification of crucial features.

Our quantitative evaluation using the ROAD benchmark
is presented in Table 3. The results highlight the exceptional
performance of GFR-CAM, particularly on CNN architec-
tures. Our method achieves state-of-the-art (lowest) scores
on VGG-16 (59.38), ResNet-50 (-58.7), and DenseNet-161
(13.11), demonstrating its superior ability to pinpoint the
most influential features in convolutional models. While Ab-
lationCAM [33] is specialized for and performs best on the
transformer-based DeiT-Base, GFR-CAM’s strong and con-
sistent results across multiple backbones confirm its robust-
ness. The qualitative visualization in Figure 4 illustrates why
GFR-CAM excels: it identifies a compact and semantically

critical region, whose removal causes significant information
loss and thus explains the rapid performance drop measured
by the ROAD metric.
GradCAM

Input Image EigenCAM

KPCA-CAM GFR-CAM(Ours)

. i .

Figure 4. Qualitative results on ROAD. GFR-CAM identifies com-
pact critical regions, yielding greater performance drops under
blurring and superior quantitative scores.

3.3. Beyond the First Component: The Explanatory
Power of GFR-CAM

A key limitation of existing decompositional CAMs like
EigenCAM, KPCA-CAM, and UMAP-CAM [23] is their
reliance on dimensionality reduction techniques that prior-
itize variance preservation, where subsequent components
capture progressively less variance and often degrade into
noise. Our GFR-CAM, however, uses Gram-Schmidt orthog-
onalization, which we hypothesize does not merely rank fea-
tures by importance but instead isolates distinct, semantically
meaningful concepts. This section validates this core advan-
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Figure 5. GFR-CAM component analysis. (a) Single object decomposition: Our method’s 2™ and 3™ components isolate distinct semantic
parts (e.g., lizard’s head vs. hand/tail), providing finer-grained explanations than UMAP CAM, EigenCAM and KPCA-CAM. (b) Multiple
Objects: It disentangles complex scenes by separating distinct object instances, while other methods merge or fail to separate them.

Table 3. ROAD benchmark scores (lower is better, |) across various
architectures. GFR-CAM achieves state-of-the-art performance on
CNN-based models. All values are x 10.

Model VGG-16 ResNet50 DenseNet-161 DeiT-Base
GradCAM 80.23 -24.3 67.69 5.85
GradCAM++ 82.34 -27.8 82.63 9.84
HiResCAM 65.73 3.14 85.40 16.63
ScoreCAM [47] — 12.1 15.23 10.10
AblationCAM[33] 68.51 -18.3 32.45 3.89
EigenCAM 75.23 -16.2 23.39 11.76
ShapleyCAM 87.57 -24.2 86.42 —
KPCA-CAM 82.03 -58.3 85.32 12.51
GFR-CAM (Ours) 59.38 -58.7 13.11 10.17

tage, demonstrating that GFR-CAM’s subsequent compo-
nents provide richer, more structured explanations than their
dimensionality reduction-based counterparts, effectively de-
composing a model’s reasoning into a set of interpretable
parts.

The qualitative results visually confirm this hypothesis.
As shown in Figure 5a, when applied to a single object,
GFR-CAM’s components successfully partition the object
into its constituent parts, such as a lizard’s head and limbs,
while competing methods produce diffuse or redundant maps.
This ability extends to more complex scenarios, as seen in
Figure 5b, where GFR-CAM effectively disentangles a multi-
object scene by assigning each of its primary components
to a distinct object instance, a task where other methods
struggle and often merge the explanations.

This visual superiority is substantiated by the quantita-
tive analysis in Table 4. For both the 2" and 3™ compo-
nents, GFR-CAM consistently outperforms EigenCAM and
KPCA-CAM, leading in the majority of metrics. Notably, it
achieves the best faithfulness scores (lowest Average Drop)

while maintaining high coherency. While the performance of
PCA-based methods degrades sharply for the 3 component,
GFR-CAM remains robust, proving its unique capability to
generate a stable and high-fidelity set of orthogonal explana-
tions beyond the primary one.

Table 4. Quantitative comparison of CAM methods using the Swin-
T model for the 2nd and 3rd extracted components. We evaluate our
proposed GFR-CAM against EigenCAM and KPCA-CAM across
six different metrics.

2" Component

Method AD| Coht Com] ADCC?+ ICt ADDT
EigenCAM 9131 44.61 21.61 474 1095 2173
KPCA-CAM 84.69 59.03 2245 592  11.85 24.93

GFRCAM (Ours) 80.43 58.46  22.11 6.14 12.57  26.03

34 Component

Method AD| Cohf{ Com{ ADCCt IC1 ADD?
EigenCAM 9423 3927 1245 356 716 1030
KPCA-CAM 89.76 4379 1570 429 1044 17.44

GFRCAM (Ours) 87.21 46.51  16.40 4.41 9.91 18.63

3.4. Ablation Study

To validate the design choices of GFR-CAM, we conducted
an ablation study on two key hyperparameters: the func-
tion family used for orthogonalization and the number of
components to generate.

Choice of Orthogonalization Function. The computa-
tional cost of GFR-CAM is influenced by the complexity of
the function family, f(z), used in the Gram-Schmidt process.
Following the methodology in [50], we evaluated linear func-
tions (e.g., f1(z) = z; for i € [d], polynomial functions up
to degree 2 (f2(z) = z;z;, for i,j € [d]), and polynomial



functions up to degree 3 (f3(z) = z;z;2, for i, j, k € [d]),
where d is the number of features in the feature map. polyno-
mials. As summarized in Table 5, the linear option achieves
the best trade-off between runtime and attribution quality, so
we adopt f1(z).

Table 5. Computational cost comparison (seconds) for different
orthogonalization functions in GFR-CAM.

Family Function fi(2) =z fo(2) = ziz;  f3(2) = zizjzk

GFR-CAM(f(2)) 0.45 0.91 221

Number of Components. We also analyzed the trade-off
between the number of generated components (m) and their
explanatory value. We found that the 2" and 3™ components
consistently provided valuable, distinct visual evidence, as
detailed in Section 3.3. However, components beyond the
third (m > 4) introduced significant computational latency
while failing to provide a commensurate improvement in in-
terpretable information; these higher-order maps often high-
lighted redundant features. Based on this analysis, we deter-
mined that focusing on the first three components offers the
most effective compromise between detailed multi-faceted
explanations and practical efficiency.

4. Conclusions and Future Work

We introduced GFR-CAM, a novel gradient-free framework
that addresses the fundamental limitation of existing Class
Activation Maps: their inability to provide comprehensive,
multi-faceted explanations of CNN decision-making. By
leveraging Gram-Schmidt orthogonalization instead of PCA-
based decomposition, GFR-CAM generates hierarchical acti-
vation maps where each component captures distinct, mean-
ingful visual evidence rather than progressively noisier ap-
proximations.

Our extensive evaluation demonstrates that GFR-CAM’s
primary component achieves state-of-the-art performance
across multiple architectures and benchmarks, while addi-
tional subsequent components provide additional interesting
explanatory power. We showed that these additional maps
are not artifacts but genuine insights that decompose single
objects into semantic parts and systematically disentangle
complex multi-object scenes. This capability represents a
significant advancement over existing methods that suffer
from “explanatory tunnel vision.”

The theoretical foundation of Gram-Schmidt orthogo-
nalization ensures that each component is linearly indepen-
dent and information-rich, making GFR-CAM particularly
valuable for safety-critical applications where comprehen-
sive understanding of model reasoning is essential. Several
promising directions emerge from this work. First, extending
GFR-CAM to other vision architectures, including newer
transformer variants and hybrid CNN-transformer models,

could further validate its generalizability. Second, inves-
tigating adaptive component selection mechanisms could
automatically determine the optimal number of meaningful
components for different image complexities, potentially
improving efficiency.

The integration of GFR-CAM with interactive visualiza-
tion tools presents opportunities for enhanced human-AlI col-
laboration, particularly in medical imaging and autonomous
systems where detailed explanatory feedback is crucial. Ad-
ditionally, exploring temporal extensions for video under-
standing and applying the hierarchical decomposition princi-
ple to other modalities (e.g., NLP) could broaden the impact
of our orthogonalization-based approach.

Finally, investigating the theoretical connections between
Gram-Schmidt decomposition and other interpretability
methods, as well as developing quantitative metrics specif-
ically designed to evaluate multi-component explanations,
would strengthen the foundation for next-generation explain-
able Al systems that move beyond single-focus explanations
toward comprehensive explainable model understanding.
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