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Abstract. Two different approaches for interpretable Concept-Based
Models (CBMs) exist: locally interpretable CBMs, which allow humans
to understand the prediction of individual instances, and globally inter-
pretable CBMs, which provide a broader understanding of their reason-
ing. In practice, the former focus on achieving high predictive accuracy,
while the latter emphasize robustness and verifiability. To bridge this
gap between extremes, we propose a hybrid model that integrates the
strengths of both approaches. Our model, called Unified Concept Rea-
soner (UCR), leverages the high explainability of globally interpretable
CBMs and high accuracy of locally interpretable CBMs, resulting in a
powerful CBM with two heads that can be used for prediction. In our
preliminary experimental evaluation, we show that UCR reaches compa-
rable accuracy with competitors, converges to coherent global and local
heads and is more stable w.r.t. hyperparameters.
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1 Introduction

Within the broader field of explainable AI (xAI) [1], intrinsically explainable
models are constructed in such a way that their decision-making processes can
be understood directly, without the need for additional post-hoc techniques to in-
terpret them. Concept-based models (CBMs) are a prominent group within this
category [12]. CBMs are machine learning models that incorporate high-level,
human-understandable features called concepts directly within their architec-
ture. For example, when a CBM should predict whether an object in an image
is an apple, some possible concepts might include whether the object is round,
red, soft, and so on. The representation of human-understandable concepts al-
lows CBMs to explain to users which concepts were used in making a decision.
Recently, many CBMs have been developed, such as Concept Bottleneck Models
(CBNMs) [7], Concept Embedding Models (CEMs) [15], as well as various other
models [6, 10,11,13,14].

Apart from explainability, a stronger desideratum in these models is inter-
pretability, which assesses whether a human can discern how concepts are utilized
to make predictions. Interpretability can be categorized into local and global, with
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global interpretability representing a stronger criterion [16]. Local interpretabil-
ity allows for understanding the prediction of individual instances. It enables a
human to trace how the concepts contribute to the specific output prediction for
a given input. For example, many post-hoc xAI methods, such as saliency maps,
provide local interpretability by highlighting which parts of an input influenced
the prediction. In contrast, global interpretability provides a broader understand-
ing of how concepts affect predictions across all possible inputs. This means a
human can grasp the overall logic and rules governing the model’s predictions,
regardless of the specific input. A notable example of a globally interpretable
model is a decision tree, where the entire decision-making process is transparent
and comprehensible. Other examples include a logic program, where the logic
rules used for prediction are visible to the human, and logistic regression, where
the weights can be inspected.

Deep Concept Reasoner (DCR) models [2] are examples of CBMs that exhibit
local interpretability. For a given input, a DCR model generates a logic rule that
is evaluated on the current concepts to make a prediction. Since the logic rule
describes how the concepts contribute to the prediction, the prediction can be
interpreted locally - but not globally, as DCR does not offer a comprehensive
view of all possible rules that can be used for prediction. Therefore, DCR’s overall
decision-making process and the full range of possible rules are not transparent
when considering the model as a whole.

In contrast, Concept-based Memory Reasoner (CMR) models [3] are CBMs
that provide global interpretability. A CMR model learns logic rules in a memory,
and for a given input, selects one of these rules for evaluation using the concepts.
CMR’s global interpretability arises from the transparency of the rules stored in
the memory: a human can inspect these rules to understand how the output can
be predicted from the concepts.

Local CBMs, like DCR, and global CBMs, like CMR, usually belong to dif-
ferent classes of approaches with different foci. Local methods focus on build-
ing models that are as accurate as their black-box counterpart, while providing
some understanding of the decision-making process. On the other hand, global
methods focus on robustness and verifiability, as their global behaviour can be
inspected and verified. However, current models focus on the two extremes of
this local-global dimension.

In this paper, we try to fill this gap by bridging the previous two CBMs. In
particular, we present the following contributions:

– We propose to project the probabilistic semantics of CMR onto DCR, pro-
viding a probabilistic perspective for DCR’s local explanations, that we call
Probabilistic DCR (PDCR).

– We demonstrate that PDCR can be interpreted using a variational approxi-
mation of CMR, offering a deeper understanding of the relationship between
these two models.

– We leverage this insight to introduce a new CBM called Unified Concept
Reasoner (UCR), which integrates both CMR and PDCR. This model fea-
tures two distinct heads: one providing global interpretability and the other
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offering local interpretability. We also present a preliminary empirical com-
parison of UCR with CMR and DCR.

2 Preliminaries

2.1 Concept Bottleneck Models

Concept Bottleneck Models (CBNMs) [7] are concept-based models that first
predict the concepts from the input, and then predict the task solely from the
concepts. Under probabilistic semantics, these models can be trained by opti-
mizing the log-likelihood of the data:1

max
∑

(x̂,ĉ,ŷ)∈D

log p(ŷ, ĉ|x̂) = max
∑

(x̂,ĉ,ŷ)∈D

log p(ĉ|x̂) + log p(ŷ|ĉ) (1)

where the (x̂, ĉ, ŷ) are triplets of input, concept labels and task labels. Typ-
ically, p(c|x) is a neural network (called the concept predictor) and p(y|c) is
either a neural network or logistic regression (called the task predictor). There
is a distinction between Concept Bottleneck models (CBNMs) and more general
Concept-Based Models (CBMs). While in CBNMs, only the concepts are used
for task prediction, thus behaving as a bottleneck, in CBMs, other information
can be passed to the task predictor. We will focus on the more general CBM
class in this paper.

2.2 Deep Concept Reasoner

In this section and the following ones, we consider rules that are conjunctions of
concepts or their negation. For example, for a concept set {yellow, round}, some
example rules are y ← yellow ∧ round, y ← yellow ∧ ¬round and y ← round.

Deep Concept Reasoner (DCR) [2] is a CBM that first generates a fuzzy logic
rule from the input and then evaluates this rule using concept predictions, allow-
ing for local interpretability. Specifically, for each concept j, DCR’s task predictor
employs two neural networks ϕj : Rm → [0, 1] and ψj : Rm → [0, 1] to predict
from some embedding predicted from the input respectively the role and rele-
vance of that concept. The relevance determines whether the concept is present
in the rule or not, while the role determines whether it is present as a positive
or negative literal. For example, consider the concept set {yellow , round , soft}.
In the rule y ← yellow ∧¬round , the concept yellow is relevant (ϕ = 1) and has
a positive role (ψ = 1), round is relevant (ϕ = 1) has a negative role (ψ = 0),
and soft is irrelevant (ϕ = 0), making its role inconsequential. These semantics
are formalized through the following logic formula used for task prediction:

y ⇔
nC∧
j=1

(¬ψj ∨ (ϕj ⇔ cj)) (2)

1 When it is clear from the context, we abbreviate assignments to variables, e.g. p(y =
ŷ) becomes p(ŷ).
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where each ψj and ϕj are neural network outputs on some embedding and c
represents the standard concept predictions. The Boolean semantics are relaxed
into fuzzy semantics by employing some t-norm2, relaxing the discrete binary
values of each ψ, ϕ and c into continuous values between 0 and 1. This model can
be trained like any other CBM by providing supervision on the task and the con-
cepts. In case there are multiple tasks (i.e. multilabel or multiclass classification),
the tasks are modelled independently of each other.

A notable issue with DCR is the degrees of freedom in the rule generation, as
multiple rules can yield the same task prediction. For example, consider concept
predictions yellow = 1 and round = 0. To predict y = 1, DCR can predict (and
evaluate) several different rules: y ← yellow , y ← yellow ∧¬round , y ← ¬round ,
among others. This freedom exists because DCR can generate a distinct rule
for each input, unlike traditional rule learners such as decision trees and ILP,
for which the rule(s) do not depend on the input. In practice, the human needs
to tune the model in order to learn rules that they consider meaningful and
interpretable, as simply maximizing the likelihood of the data can result in any
of these rules being learned.

In DCR, this tuning consists of a tunable bias for simple (i.e. short) rules.
This is achieved by encoding a degree of competition for relevance among the
concepts using a special activation function that incorporates a Softmax opera-
tion. This activation function has a temperature hyperparameter, which requires
careful tuning to obtain meaningful rules in practice. However, a significant draw-
back of this model is that this temperature parameter is challenging for humans
to interpret, complicating the tuning process.

2.3 Concept-based Memory Reasoner

Concept-based Memory Reasoner (CMR) [3] is a CBM that also evaluates a
logic rule for task prediction, but it differs from DCR in several key aspects.
Firstly, instead of directly predicting the rule, it learns a set of logic rules stored
in a memory. For a given input, CMR learns to select one of these rules for
evaluation. This approach ensures global interpretability, as all rules used for task
prediction are transparent and accessible to the human. Secondly, CMR employs
probabilistic semantics rather than fuzzy semantics. Thirdly, CMR represents
rules differently. Instead of encoding the role and relevance of a concept as two
separate variables, CMR uses a single three-valued categorical variable to signify
a positive role, a negative role or irrelevance.

We will now explain CMR in more detail. CMR has a memory, also referred
to as rulebook, comprising nR embeddings, each representing a rule. Each rule
embedding θ ∈ Rk is decoded into a logic rule using a neural network ρ : Rk →
RnC×3, parametrizing the logits of nC three-valued categorical distributions,
with each distribution corresponding to a concept, indicating its role (positive,
negative, or irrelevant) in the rule. Then, the set {ρ(θi) | i ∈ [1, nR]} forms the

2 An example is the Gödel t-norm, for which a∧ b = min(a, b), a∨ b = max(a, b) and
¬a = 1− a.
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decoded rulebook, representing a set of logic rules, each of which can be evaluated.
CMR includes a neural network s : Rl → RnR that functions as a selector
mechanism over these rules, parametrizing for a given embedding predicted from
the input nR logits of a categorical distribution, one per rule in the memory. The
task prediction then involves evaluating the selected logic rule. These semantics
are captured in the following logic formula that is used for task prediction:

y ⇔
nR∨
i=1

(s = i)

nC∧
j=1

(ρij = I) ∨ (((ρij = P ) ∧ cj) ∨ ((ρij = N) ∧ ¬cj))

 (3)

which is the disjunction over all rules in the memory, where each disjunct com-
bines the selection of a rule (s = i) and the corresponding rule body. The rule
body evaluates to true if for each concept, it is either irrelevant (ρij = I) (i.e.
not in the rule body), it has a positive role (ρij = P ) and is true (cj), or it has a
negative role (ρij = N) and is false (¬cj). CMR employs probabilistic semantics:
s and each ρij are categorical random variables, and the concepts are Bernoulli
random variables. Under these semantics, computing the likelihood of the task
being true using Eq. (3) corresponds with:

p(y|x̂) =
nR∑
ŝ=1

p(ŝ|x̂) p(y|ŝ, x̂) (4)

where

p(y = 1|ŝ, x̂) =
nC∏
j=1

(p(ρj = I|ŝ) + p(ρj = P |ŝ) p(cj = 1|x̂) + p(ρj = N |ŝ) p(cj = 0|x̂))

(5)
CMR’s method of tuning the model to acquire meaningful rules is signifi-

cantly different from DCR’s approach. Firstly, CMR employs regularization to
make the rules as specific as possible, aiming to learn rules that contain the fewest
irrelevant concepts. The complete likelihood to be optimized by the training ob-
jective of the task predictor corresponds with:3

p(ŷ|x̂, ĉ) =
nR∑
ŝ=1

p(ŝ|x̂) p(ŷ|ŝ, ĉ)β1 preg(ρ = ĉ|ŝ)ŷ (6)

where ĉ consists of the ground truth concepts, β1 is a hyperparameter, preg is
the regularization, and:

p(y = 1|ŝ, ĉ) =
nC∏
j=1

(p(ρj = I|ŝ) + p(ρj = P |ŝ)1[ĉj = 1] + p(ρj = N |ŝ)1[ĉj = 0])

(7)
which is similar to Eq. (5). Secondly, CMR encodes a degree of competition for
relevance by setting an upper limit on the number of rules that can be learned,
3 The concept predictor p(c|x) can be trained like any other CBM.
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defined by the hyperparameter called the rulebook size nR. This hyperparameter
is considerably more interpretable for a human than DCR’s temperature, making
it easier to tune the model effectively.

Example. Consider a scenario where the task y is predicting whether a car
should stop based on two concepts r (signalling a red light) and c (signalling
cloudy weather). If the light is red, the car should stop, and the weather being
cloudy is irrelevant. We have four data points: [r, c, y], [r,¬c, y], [¬r, c,¬y] and
[¬r,¬c,¬y]. By choosing nR = 2, CMR will learn the rules y ← r ∧ c (ρr = P
and ρc = P ) and y ← r ∧ ¬c (ρr = P and ρc = N). By choosing nR = 1, CMR
will learn the rule y ← r (ρr = P and ρc = I), where c is irrelevant.

3 Method

3.1 Probabilistic Deep Concept Reasoner

In this section, we propose two changes to DCR. We call the variant of DCR
that incorporates these changes Probabilistic DCR (PDCR). The first change we
propose is to use CMR’s representation of a rule instead of DCR’s. This means
that instead of having two independent variables per concept representing its
role and relevance, the model uses a single three-valued categorical variable per
concept, signifying a positive or negative role, or irrelevance. Consequently, the
logic formula DCR uses for task prediction (Eq. (2)) changes to:

y ⇔
nC∧
j=1

((ρj = I) ∨ (((ρj = P ) ∧ cj) ∨ ((ρj = N) ∧ ¬cj))) (8)

which closely corresponds to CMR’s logic formula (Eq. (3)), the difference being
that there is no disjunction over rules in a memory. The second change we
propose is to employ probabilistic semantics instead of fuzzy semantics. Under
probabilistic semantics, computing the likelihood of the task using the above
logic formula corresponds with4:

p(y = 1|x̂) =
nC∏
j=1

(p(ρj = I|x̂)+p(ρj = P |x̂) p(cj = 1|x̂)+p(ρj = N |x̂) p(cj = 0|x̂)) (9)

which is similar to Eq. (5) of CMR, the difference being that the role and rel-
evance of each concept more generally depends on the input (p(.|x̂)) instead of
only on which rule has been selected (p(.|ŝ)).

3.2 Interpreting PDCR using a variational approximation of CMR

In this section, we demonstrate that we can interpret PDCR within a variational
approximation of CMR. In particular, we show that PDCR can be seen as an
4 This can be derived similarly as for CMR (see [3]) by exploiting the independence

between the different conjuncts.
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approximate distribution of CMR and that its training objective is a partial
estimate of the standard lower bound of variational inference. The intuition
behind this derivation is that both PDCR and CMR compute a rule embedding
that is decoded into a logic rule. While the way these embeddings are obtained is
different (i.e. a neural encoder for PDCR and a selection from a trainable memory
for CMR), PDCR can be thought of as using a neural model to approximate the
harder selection of CMR.

In order to show this, we first make the rule embeddings θ explicit inside
Eq. (5) of CMR:

p(ŷ|ŝ, x̂) =
∫
p(θ̂|ŝ) p(ŷ|θ̂, x̂) dθ̂ (10)

where

p(y = 1|θ̂, x̂) =
nC∏
j=1

(p(ρj = I|θ̂) + p(ρj = P |θ̂) p(cj = 1|x̂) + p(ρj = N |θ̂) p(cj = 0|x̂))

(11)

Here, it becomes explicit that selecting a rule (s = ŝ) corresponds to selecting a
distribution over rule embeddings θ, each of which gets decoded into roles and
relevances.

We use variational inference to approximate the distribution p(θ|ŝ) with an-
other distribution q(θ|x̂). We first take the logarithm of Eq. (10):

log p(ŷ|ŝ, x̂) = log

∫
p(θ̂|ŝ) p(ŷ|θ̂, x̂) dθ̂ (12)

which is equivalent to:

log p(ŷ|ŝ, x̂) = log

∫
p(θ̂|ŝ) p(ŷ|θ̂, x̂)

(
q(θ̂|x̂)
q(θ̂|x̂)

)
dθ̂ (13)

Because of Jensen’s inequality, we obtain:

log p(ŷ|ŝ, x̂) ≥
∫
q(θ̂|x̂) log

(
p(θ̂|ŝ) p(ŷ|θ̂, x̂)

q(θ̂|x̂)

)
dθ̂ (14)

Then, we can split the multiplication within the logarithm into a sum of loga-
rithms, and split the integral accordingly:

log p(ŷ|ŝ, x̂) ≥
∫
q(θ̂|x̂) log p(ŷ|θ̂, x̂) dθ̂ +

∫
q(θ̂|x̂) log

(
p(θ̂|ŝ)
q(θ̂|x̂)

)
dθ̂ (15)

which results into the following lower bound:

log p(ŷ|ŝ, x̂) ≥ Eq(θ|x̂)[log p(ŷ|θ, x̂)]−KL(q(θ|x̂) || p(θ|ŝ)) (16)

This inequality indicates that maximizing the log-likelihood of the data can
be done by maximizing the log-likelihood of the expected prediction under the
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approximate distribution and by minimizing the KL divergence between the
approximate and the exact distribution. Intuitively, this criterion states that in
order to maximize the likelihood of the data, we can compute the rule embedding
θ using PDCR and then use the decoding strategy of CMR. At the same time,
the KL divergence between PCDR’s distribution q(θ|x̂) and CMR’s distribution
p(θ|ŝ) should be minimized. While this minimization will provide the entry point
for our joint model in Sec. 3.3, for PDCR, p(θ|ŝ) represents just a learnable prior
acting as regularizer. We will therefore neglect it in the rest of the discussion.

After substituting this in Eq. (4) of CMR, we have:

p(ŷ|x̂) ⪆
nR∑
ŝ=1

p(ŝ|x̂) p(ŷ|ŝ, x̂) ⪆
nR∑
ŝ=1

p(ŝ|x̂) eEq(θ|x̂)[log p(ŷ|θ,x̂)] (17)

where the factor with the exponential is not dependent on ŝ. Therefore, this
simplifies to:

p(ŷ|x̂) ⪆ eEq(θ|x̂)[log p(ŷ|θ,x̂)] (18)

or in log-space,
log p(ŷ|x̂) ⪆ Eq(θ|x̂)[log p(ŷ|θ, x̂)] (19)

Normally, this expectation has to be approximated by sampling; however, we
approximate the expectation by evaluating the expression in the distribution’s
maximum a posteriori estimate θx̂, which we parametrize with a neural network
f .5 This results in:

log p(ŷ|x̂) ⪆ log p(ŷ|θx̂, x̂) where θx̂ = f(x̂) (20)

Lastly, as, the likelihood p(ŷ|θ, x̂) is the same for PDCR as for CMR (given
by Eq. (11)), we can interpret this as follows: this variational approximation of
CMR can be optimized by optimizing the objective of PDCR.

3.3 Unified Concept Reasoner: combining PDCR and CMR

We propose to exploit this connection between PDCR and CMR to define a
new CBM that combines both models. This hybrid model features two heads for
task prediction: one that is locally interpretable and works by generating and
evaluating a logic rule (as in PDCR), and one that is globally interpretable and
works by selecting a rule from rules learned in a memory and evaluating it (as in
CMR). We call this model Unified Concept Reasoner, abbreviated UCR. Fig. 1
shows an example task prediction at test time, where the human can choose
between the two heads.

Training objective. UCR is trained by using the variational approximation
outlined in the previous section, incorporating Eq. (16) in the CMR likelihood

5 This can be justified by considering a very peaked normal distribution, in the limit
becoming a Dirac delta. In this case, the network f would be parameterizing the
mean of the distribution or, similarly, the point mass of the delta.
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Similarity
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𝑝 𝜃 𝑥

∼

Fig. 1: Example task prediction, adapted from Figure 2 in [3]. In this figure, we sample
from each distribution (∼) for clarity, but in practice we compute every probability
exactly. Each black box containing a probability distribution is parametrized by a
neural network. (A) As in other CBMs, concepts are predicted from the input. (B1-
local) A single local rule embedding is predicted from the input. (B2-global) A global
rule embedding is selected from the global rulebook according to a similarity score
with the local embedding. The rule embedding is decoded into a rule (C) which is then
evaluated with the predicted concepts to predict the task (D).

equation (Eq. (6)) without ignoring the term with the KL divergence. This re-
sults in the following likelihood being optimized during training:

p(ŷ|x̂, ĉ) ≥
nR∑
ŝ=1

p(ŝ|x̂) eβ1(Eq(θ|x̂)[log p(ŷ|θ,ĉ)]−KL(q(θ|x̂) || p(θ|ŝ)))preg(ρ = ĉ|ŝ)ŷ (21)

Optimizing the lower bound of this likelihood achieves three objectives. First, it
ensures that using the approximate distribution q(θ|x̂) for rule prediction results
in accurate task predictions. Second, it promotes the specificity of the decoded
rule by minimizing the inclusion of irrelevant concepts. Third, it ensures that
the approximate distribution q(θ|x̂) approximates the true distribution p(θ|x̂),
which is defined by p(s|x̂) and p(θ|ŝ).

Intuitively, when training UCR, the local path is used to predict rules that
make correct task predictions and are as specific as possible, and the global
path with its limited rule capacity acts as a regularizer, introducing a degree
of competition for relevance. This provides a key advantage over DCR when
designing the model : to tune UCR to learn meaningful rules, CMR’s rulebook
size hyperparameter nR is used instead of DCR’s temperature hyperparameter,
which is arguably one of the main drawbacks of DCR [3]. In terms of advantages
over CMR, the use of UCR’s local head helps navigating the rule embeddings
space (i.e. θ) and avoids CMR’s need to reinitialize parameters of the distribution
p(s|x) to escape local minima during training.

Two prediction heads at test time. At test time, we can choose to use
either the approximate distribution q(θ|x̂) or the distribution p(θ|x̂) to provide
an embedding that will be decoded into a rule for task prediction, representing
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respectively the locally and globally interpretable head; the local one corresponds
to the PDCR approach, while the global one corresponds to the CMR approach.
These two heads can be computed in the following way:

plocal(ŷ|x̂) =
nR∑
ŝ=1

p(ŝ|x̂) eEq(θ|x̂)[log p(ŷ|θ,x̂)]

pglobal(ŷ|x̂) =
nR∑
ŝ=1

p(ŝ|x̂) eEp(θ|ŝ)[log p(ŷ|θ,x̂)]

(22)

For the local head, we can omit the sum over ŝ because the terms are independent
of ŝ. Moreover, we approximate the expectation in plocal(ŷ|x̂) by evaluating the
expression in the distribution’s maximum a posteriori estimate θx̂, similarly to
what was done in the previous section:

Eq(θ|x̂)[log p(ŷ|θ, x̂)] ≈ log p(ŷ|θx̂, x̂) where θx̂ = f(x̂) (23)

Thus, the local head simplifies to:

plocal(ŷ|x̂) ≈ p(ŷ|θx̂, x̂) where θx̂ = f(x̂) (24)

which corresponds to PDCR. We call the embedding θx̂ the local rule embedding.
While in CMR, the distribution p(θ|ŝ) is a Dirac delta, in the previous section,

we left this design choice open. Similarly as for the local head, at test time, we
approximate p(θ|ŝ) by evaluating the expression in the distribution’s maximum
a posteriori estimate to obtain CMR’s semantics. Therefore, we obtain:

pglobal(ŷ|x̂) ≈
nR∑
ŝ=1

p(ŝ|x̂) p(ŷ|θŝ, x̂) (25)

which corresponds to CMR. We call the embeddings θŝ the global rule embed-
dings. These embeddings are learnable parameters and stored in a memory, as
in CMR.

Specializing for Gaussian parametrization. In order to compute the
training objective in Eq. (21), we need to compute the KL divergence between
q(θ|x̂) and p(θ|ŝ). Let us take as distributions p(θ|ŝ) and q(θ|x̂) two normal dis-
tributions with fixed isotropic covariance matrices (i.e. diagonal and all diagonal
elements are the same), and means parameterized by neural networks. Then, for
the univariate case, it is known that:

KL(q(θ|x̂) || p(θ|ŝ)) = − log

(
σp
σq

)
− 1

2
+
σ2
q + (θx̂ − θŝ)2

2σ2
p

(26)

with σp and σq the standard-deviations and θŝ and θx̂ the means of respec-
tively p(θ|ŝ) and q(θ|x̂). As we do not parametrize the standard-deviations, the
term with the logarithm is constant. During optimization, we can ignore the
constant terms:

KL(q(θ|x̂) || p(θ|ŝ)) ∝ (θx̂ − θŝ)2

2σ2
p

(27)
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After neglecting the constant terms during optimization, we note that σp can
be used as a hyperparameter β signifying the importance of the KL term in
the training objective. We use this in Eq. (27) and generalize to multivariate
distributions, obtaining:

KL(q(θ|x̂) || p(θ|ŝ)) ∝ β · ||θx̂ − θŝ||22 (28)

In CMR, the categorical distribution p(s|x̂) is parametrized by a neural net-
work that takes x̂ as input. We propose to instead parametrize the logits of
p(s|x̂) using a similarity between the local rule embedding θx̂ and each global
rule embedding θŝ:

p(ŝ|x̂) = eα·sim(θx̂,θŝ)∑nR

s̄=1 e
α·sim(θx̂,θs̄)

(29)

where α is a hyperparameter, and the similarity measure is based on the mean
squared error distance metric:

sim(θ1, θ2) =
1

1 + ||θ1 − θ2||22
(30)

with ||.||2 denoting the L2-norm. This way, the distribution p(s|x̂) is non-para-
metric except for parameters shared with q(θ|x̂) and each θŝ. As a consequence,
the global head can select a global rule embedding only if it is the one that is
the closest to the local rule embedding, which is ideally the global rule the most
similar to the local rule.

Inherited properties. UCR inherits the powerful property from CMR and
DCR of being a universal binary classifier [5], a characteristic it shares with
neural networks. Consequently, with proper tuning, UCR can obtain black-box
accuracy for any concept set, which is a property that sets it apart from many
other CBMs like Concept Bottleneck Models. The proof is the same as for CMR
(see [3]). Another notable property shared with CMR is that the likelihood
computation is tractable in the number of rules and concepts, more specifically
O(nC · nR). This follows from Eqs. (11), (21) and (28) to (30).

Benefits over CMR and DCR. We restate some of the advantages of
UCR over both DCR and CMR. Compared to DCR, UCR offers a globally in-
terpretable head, while DCR only offers local interpretability. Additionally, UCR
simplifies the tuning process by adopting CMR’s number of rules hyperparame-
ter, rather than relying on DCR’s temperature hyperparameter, which is more
difficult to interpret. UCR also shares CMR’s benefit of interpreting rules as data
prototypes, as well as its probabilistic as opposed to fuzzy semantics, which have
been shown to be less intuitive in the learning setting [8]. Compared to CMR,
UCR holds the potential for higher accuracy due to its less constrained, locally
interpretable head. Moreover, UCR avoids CMR’s need for reinitialization during
training to escape local optima.
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4 Experiments

Our preliminary experiments are aimed at answering the following research ques-
tions. (1) Does UCR obtain similar accuracy as DCR and CMR? (2) Do the
rules utilized by UCR’s local and global head correspond at test time? (3) Does
UCR learn meaningful rules? (4) How does UCR’s sensitivity to hyperparameters
w.r.t. the learned rules compare to DCR’s?

4.1 Experimental setting

We describe essential information about the experiments.
Datasets. We use the dataset MNIST-addition [9], where the input consists

of two MNIST images, each denoting a digit, and where there are 19 tasks, one
per possible sum of these digits. The concepts are the possible digits per image.

Evaluation. We measure classification performance on the tasks using subset
accuracy, and evaluate both heads of UCR. We also measure rule correspondence
between both heads, which we define as the percentage of data points where the
local rule and selected global rule correspond (averaged over the tasks). We
report the mean and standard-deviation of these metrics over three runs.

Baselines. We compare UCR’s performance with CMR and DCR.

4.2 Results and discussion

UCR achieves similar task accuracy as DCR and CMR. Tab. 1 presents
the accuracy of UCR, CMR and DCR. The local head of UCR shows accuracy
on par with CMR and outperforms6 DCR for all choices of nR. Additionally,
the reduction in accuracy when switching from the local to the global head in
UCR is minimal for certain choices of nR. In contrast, the performance of DCR
is only marginally influenced by the choice of temperature.

Table 1: Task accuracy on the training and test set. The results of CMR are taken
from [3]. For DCR, we consider different values for the temperature τ ; for UCR, we
consider different rulebook sizes nR, and we report the accuracy of both heads.

CMR DCR UCR

τ = .1 τ = 1 τ = 10 nR = 2 nR = 20 nR = 50

local global local global local global

Train - 96.3±.7 95.4±.9 96.9±1. 99.9±.1 13.3±.6 99.9±.1 98.0±1. 99.9±.0 97.6±.4

Test 97.5±.3 93.2±.6 93.1±1. 94.1±.6 97.7±.2 13.2±.7 97.8±.2 95.7±.8 97.6±.4 95.4±.5

6 Notice that this setting is picked from [3] which differs from [2]. In the former,
concepts are thresholded before task prediction to avoid leakage [4]. Moreover, in the
MNIST-addition dataset, the regularization term preg of CMR and UCR provides a
strong inductive bias, which helps explain why DCR performs worse.
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UCR learns meaningful global rules, and their quality can be tuned
by comparing both heads’ accuracy. Fig. 2 shows the learned global rules
of UCR for different values of nR and for learned local rules of DCR for different
values of the temperature τ . When comparing these rules with the accuracy data
in Tab. 1, a clear correspondence emerges between the difference in accuracy on
the training set of UCR’s heads and the quality of the global rules. This indicates
that the quality of the global rules can be fine-tuned by simply considering
the difference in accuracy between the heads. In contrast, for DCR, no such
correspondence exists, meaning that the rule quality can only be tuned through
manual inspection of the rules, requiring the human to already have a clear
understanding of what constitutes meaningful rules for the current task.

(a) UCR (nR = 1)

y3 ← Ω

(b) UCR (nR = 2)

y3 ← c1,1 ∧ c2,2 ∧Ω
y3 ← c1,2 ∧ c2,1 ∧Ω

(c) UCR (nR = 20)

y3 ← c1,1 ∧ c2,2 ∧Ω
y3 ← c1,2 ∧ c2,1 ∧Ω
y3 ← c1,0 ∧ c2,3 ∧Ω
y3 ← c1,3 ∧ c2,0 ∧Ω

(d) UCR (nR = 50)

y3 ← c1,1 ∧ c2,2 ∧Ω
y3 ← c1,2 ∧ c2,1 ∧Ω
y3 ← c1,0 ∧ c2,3 ∧Ω
y3 ← c1,3 ∧ c2,0 ∧Ω
y3 ← c1,2 ∧Ω

(e) DCR (τ = 0.1)

y3 ← c1,3
y3 ← ¬c1,7
y3 ← ¬c2,2
y3 ← ¬c1,7 ∧ ¬c2,2
y3 ← ¬c1,7 ∧ c2,2
[... 5 more]

(f) DCR (τ = 1)

y3 ← Ω{(1,0),(1,7),(1,9),(2,3),(2,4)}
y3 ← Ω{(1,1),(1,9),(2,0),(2,2),(2,8)}
y3 ← c2,0 ∧Ω{(1,1),(1,3),(1,5),(1,9),(2,8)}
y3 ← c2,1 ∧Ω{(1,2),(2,6)}
y3 ← c2,1 ∧Ω{(1,7),(1,9),(2,6)}
[... 20 more]

(g) DCR (τ = 10)

y3 ← c1,1 ∧ c2,2 ∧Ω
y3 ← c1,2 ∧ c2,1 ∧Ω
y3 ← c1,0 ∧ c2,3 ∧Ω
y3 ← c1,3 ∧ c2,0 ∧Ω

Fig. 2: Rules learned by UCR and DCR with different hyperparameters for task y3
(rulebook size nR and temperature τ , respectively). ci,j denotes that the i-th digit is
j. For brevity, we denote with ΩS the conjunction of the negation of the remaining
concepts except ci,j where (i, j) ∈ S. For UCR, we give the rules learned by the global
head that are selected for at least one example where the label is true. For DCR, we
give the local rules accumulated over the test set for examples where the label is true.

UCR’s local and selected global rule often correspond. We calculate
the rule correspondence on the test set between the local and global heads for
nR = 20, separately for data points where the task label is true vs false. When
the label is true, the heads almost fully correspond (98.86±0.25), while when
the label is false, the rules still often correspond (74.21±2.01). This is further
illustrated in Fig. 3, where we do a Principal Component Analysis on the local
and global rule embeddings for task y3 on the test set. For data points where
the ground truth y3 = 1, the local rule embeddings form distinct clusters based
on the rules they decode into, and each cluster has corresponding global rule
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embeddings that are only close to that cluster in the embedding space.7 For data
points where y3 = 0, although the local rule embeddings are quite clustered, not
every cluster has its own global rule embedding, explaining the difference in rule
correspondence between y = 1 and y = 0.

(a) y3 = 1 (b) y3 = 0

Fig. 3: First two dimensions of a Principal Component Analysis of local rule embed-
dings (coloured dots) and global rule embeddings (black crosses) for task y3 (nR = 20)
on the test set. Data points are split based on whether the label is true or false. We
only show global rule embeddings that are selected for at least one example. In each
figure, local rule embeddings that share the same colour decode into the same rule.

5 Conclusion

We presented a probabilistic perspective for DCR, a locally interpretable concept-
based model originally utilizing fuzzy semantics. Following this, we introduced
the insight that this probabilistic version of DCR can be interpreted using a vari-
ational approximation of CMR, a globally interpretable concept-based model.
Building on this insight, we introduced a new concept-based model called UCR,
which integrates both DCR and CMR, resulting in a model with two heads: one
being globally interpretable and the other locally interpretable. We conducted
a preliminary empirical investigation of this model, showing that UCR reaches
comparable accuracy with competitors, converges to coherent global and local
heads and is more stable w.r.t. hyperparameters.

For future works, further evaluation of UCR is required to fully assess its
performance across a broader range of realistic datasets. Additionally, it would
be interesting to find mathematical bounds on the correspondence between local
and global rules, providing a formal understanding of their relationship.

7 Note that, because the selector p(s|x) selects based on similarity between global
and local rule embeddings, it is guaranteed that, for a given input, the global rule
embedding closest to the local one gets selected.
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