Neurosymbolic Concept-Based Reasoners Go Beyond

the Accuracy-Interpretability Trade-Off of Concept Bottleneck Models

David Debot and Giuseppe Marra Integrating Local and Global Interpretability for Deep Concept-Based Reasoning Models
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Concept Bottleneck Models 1] Deep Concept Reasoner [2]

CBNMs = intrinsically explainable models that first predict concepts and then predict a downstream task with them Rule generation = neural prediction Of a rule

= high-level, human-understandable features related to the task
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[& Highly accurate no matter the concepts [@ Requires extensive tuning to obtain meaningful rules
[@ High-level, human-understandable explanations [@ Low accuracy [@ Low interpretability [@ Locally interpretable: interpret how concepts are used for a specific input [@ but not globally

Concept-based Memory Reasoner [3]

Rule generation = neural selection in a learned memory of rules CMRis highly accurate no matter the employed concepts
Theorem: CMR is a universal binary approximator if ng = 3 Best CBNM —li— CMR —&— Black box
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NUMBER OF CONCEPTS
CMR’s global interpretability allows verification of properties CMR’s rule learning allows human interaction during training
All decision rules in memory are transparent = model properties can be verified before deployment The way CMR learns rules allows for human interaction in multiple ways = “rule interventions”
“Does the property hold no matter which rule is selected?”
property hotane matterwhich rure Memory ofrules . prover Rule intervention Can be used for Example
property to check - - + ifOthen X nomm—p Yes /
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Given and formula @, compute 7' = ¢
l or l or ‘ Memory of rules prover Forbid a concept from beingin a rule Debiasing Avoid using @@ in rule 1
) o A - + it then ¢ e No X
Modelchecking Theorem proving  SAT solving A Force a conceptto beinarule Enforcing safety Use inall rules
(VMM ET > M E ¢) Trep=>TEg@ SAT(Fr A=) T ¥ @
oTEg
CMR learns meaningful rules that are both accurate and prototypical of concept activations
- input body of selected rule
input 1 input 2 Possibility 1: space for 1 rule in memory white underparts A black eye
concepts A solid breast A white breast A ---
input 1 ® ﬁ example rule bodies  accurate?  prototypical? accurate? prototypical? = learn rule (2)
(1 \/ + V + - grey wing A grey upperparts A grey upper tail
2) A=0 \/ + + \/ + + Possibility 2: space for 2+ rules in memory ' Ablack throat A black eye A black forehead
hooked bill of seabird A black bill A ---
[ 2 ﬁ concepts ® 4 @)= A-On-@ e B X +4 = learn rules (3) and (4) P rooRed DT o seam A e
Input o - = select (3) for input 1 v
(4) A_'O N - x ++ V +++ ( ) I Py s " black wing A black upperparts A black undertail
\ = select (4) forinput 2 ) A black bill A black eye A -

[@ Highly accurate no matter the concepts [@ Globally interpretable: all decision rules transparent [@ Prototypes as meaningful rules [@ Difficult optimization problem
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