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Interpretable Open-Vocabulary Referring Object Detection with
Reverse Contrast Attention

Supplementary Material

SS. FitAP

Based on standard definitions, the FitAP, similar to the
mean average precision in object detection, can be defined
as

10
, 1
FitAP = ;AP(@),

wherein ® = {0; = 0.5+ (i —1)0.05 | i =1,2,...,10}.

In the absence of a confidence score from the parsed
VLM detection results, we propose to use the product of the
normalized box area of detection and the IoU, Ay, X IoU,
for the quality ranking of detection against the ground truth
data.

We establish this approach by first showing the correla-
tions of the area of the ground truth boxes with Ay, and
Apox X IoU. Then, we visualize samples of the precision-
recall curves generated by this approach, pointing out how
its features resemble those generated by vision-only mod-
els. From these, we confirm that Ay, x IoU is a reli-
able substitute for traditional confidence scores in generat-
ing precision-recall curves and calculating AP.

The critical step is to ensure that the metric used reli-
ably correlates with the probability of detection being true
positive, which is crucial to accurately calculate the AP and
understand the performance of the model.

S5.1. Area correlations

Here, we offer an empirical basis of Apox x IoU for the
quality ranking of the detection boxes by VLM from the
following:
1. The tendency of VLM’s predictions to maintain propor-
tional sizing with the actual object in the image, and
2. influence of the actual object’s size on the detection ac-
curacy.
Thus, we examine the correlation between the area of
ground truths (normalized to image size) and those of de-
tection Ayox. Our results (Figure S7) confirm that this cor-
relation is strong (Pearson r = 0.90), indicating that VLM
tends to generate detections with areas similar to the actual
objects, affirming VLM’s sizing accuracy, which is an es-
sential aspect of objectness. The size accuracy implies that
VLM recognizes and localizes the actual object in the im-
age.

We further establish the correlation between the ground
truth box areas and the proposed metric Ay oy X IoU. The re-
sults (Figure S7) also confirm that this correlation is strong
(Pearson r = 0.92), suggesting that larger, more well-fitting

boxes are more common when the model correctly detects
objects. In fact, this metric captures both the size and the
quality of fit of the detections.

S5.2. Sample precision-recall curves

The choice of a metric to replace confidence scores should
ideally reflect the confidence in detections being true posi-
tives. By showing samples of the generated precision-recall
curves, we empirically demonstrate that Ay, X IoU corre-
lates with actual detection performance and does not intro-
duce bias or misrepresentation in model evaluation.

The first noticeable feature is the general decreasing
trends shown in Figure S8. This trend expresses the ex-
pected trade-off between precision and recall. Attempting
to fit tighter (more precise) boxes increases the tendency to
miss actual objects (less recall). However, aiming for better
recall comes at the expense of looser detections.

Another peculiar feature displayed in Figure S8(h), (i) is
the zigzag pattern of the empirical curve. The zigzag is an
artifact of deriving floating-point ratios, i.e. precision and
recall, from counting. As we aim for better recall, more
detections are necessary at the expense of some of these be-
ing false positives, which explains the abrupt vertical drops.
Gradual recovery is attributed to the acquisition of true pos-
itives and the improvement in recall. Then, another peak is
encountered, at which point the next drop-off starts. How-
ever, succeeding peaks are, nevertheless, getting lower such
that the envelope maintains the downward trajectory of the
curve.

Finally, notice how the AP correspondingly decreases
as the IoU threshold © increases. This tradeoff is evident
from the curve’s displacement toward the plot’s bottom-left
corner. This displacement effectively reduces the area un-
der the curve, hence reducing FitAP. Higher © expresses a
stricter criterion to detect true positives, resulting in fewer
correct detections.

The precision-recall curves for other categories display
the same characteristics. Therefore, we have shown how
well Apox X IoU performs in predicting true positives, mak-
ing it applicable for evaluating the object detection capabil-
ity of VLMs.

S6. Indicators of the RCA-driven improvement

Here we develop a formal mathematical argument discus-
sion that shows how Condition (6) from the paper estab-
lishes a negative relationship between the number of sub-
threshold contributions to the hidden state and the scaler
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Figure S7. Correlations of ground-truth box area with Apox and Apox X IoU from the output of VLM queried with ps. The plots include
results from all object categories taken at IoU threshold, © = 0.50. Diagonals are the univariate histograms of ground-truth area, Apox,
and Apox X IoU. The dashed lines represent linear regression fits with the Pearson correlation coefficient, r, shown only for the upper
triangular plots.

m, which is the mean cross-head maximum of attention e A ¢ R™X7. attention map from head h, for h =
weights. We also prove that this inverse relationship is valid 1,...,H

regardless of whether RCA uses inverse-distance or Gaus- o All?}ax ‘= maxy, AZ(,;.’)

sian pc?ak .rewelghtlng, as defined in Section 1.2. For the o m = % Z?:l max; AT™: mean column-maximum of
preliminaries, let: Amax

* «a;; € [0, 1]: the base attention weights from token i to j

ICCV
#6

747
748
749

750
751



ICCV ICCV
#6 #6
ICCV 2025 Submission #6. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

1.0 1.0 1.0
L— 0.50 Q= 0.55 Q= 0.60
AP = 0.78 AP¥=0.74 API= 0.73
0.8 0.8 i 0.8
! 1
|
0.6 0.6 ! 0.6
1
H
0.4 0.4 ; 0.4
1
H
0.2 0.2 | 0.2
! 1
0.0 0.0 . 0.0 >
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
(a) © = 0.50, AP = 0.78 (b) ® = 0.55, AP = 0.74 (c) ® =0.60, AP =0.73
1.0 1.0 1.0
© = 0.65 © =0.70 ©=0.75
=0.69 P = 0.64 AP = 0.57
0.8 \ 0.8 0.8
| 1
! :
0.6 H 0.6 : 0.6
H |
H i
0.4 i 0.4 i 0.4
H !
| |
0.2 i 0.2 ! 0.2
H !
1 ! 1
0.0 . 0.0 - 0.0 L
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
(d) © = 0.65, AP = 0.69 (e) ® =0.70, AP = 0.64 (f)© =0.75, AP = 0.57
1.0 1.0 1.0
© = 0.80 © =0.85 © =0.90
AP = 0.48 AP = 0.37 AP = 0.22
0.8 0.8 0.8
0.6 v 0.6 0.6
| I
0.4 i 0.4 | 0.4
H
! !
02 i 0.2 i 02
H H
H i 1
0.0 L 0.0 - 0.0 4
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
(2) © = 0.80, AP = 0.48 (h) © = 0.85, AP = 0.37 (1) © = 0.90, AP = 0.22
1.0
©=0.95
AP = 0.07
0.8
0.6
0.4
0.2
I
0.0 =
0.0 0.2 0.4 0.6 0.8 1.0

() © = 0.95, AP = 0.07

Figure S8. Precision-recall curves for the category giraffe at different IoU thresholds © and the corresponding average precision, AP
(area under the curve). Solid (blue) curves from actual data; dashed lines-points (red) represent envelopes from which FitAP is calculated
as the average of AP for © € [0.50 : 0.05 : 0.95].

752 The value of m quantifies the global sharpness in attention From the paper: 759
753 across all heads. _ .

754 We want to show that: Z(d) 29+ (v =) Z Qi 760

JjeJdy

755 mt= > a; = zZ(d)?t where: 761

JjET, ¢ 1J: threshold value (floor) 762

* v~ < ¢: minimal value component of subthreshold to- 763

756 implying fewer subthreshold components, and thus, condi- kens 764

757 tion (6) implies a negative relationship between the num- * «;;: RCA-transformed attention weights (depends on m) 765

758 ber of subthreshold components and m. Thus, minimizing ), 7 tightens the bound so that z;(d) 766
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Figure S9. Flooring the subthreshold contributions of a hidden state z; implicitly implies A leading to z;. The red dashed horizontal line
in (a) corresponds to ¥} = —1.5. In this example, the embedding size is d = 3584

is closer to or above 9. For the key strategy, we show:
1. m 1T = o, assigns less weightto j € J,.
2. This assertion holds for both RCA schemes:

¢ Inverse-distance from m

* Gausian peaking around m
Therefore, the penalty term in condition (6) shrinks with
increasing m, which increases z;(d), decreasing the sub-
threshold count.

In the first case of inverse-distance reweighting:

o SRS S
7 14 qlag —m|”

which peaks at o;; = m and decreases as «; deviates
from m. Suppose m increases. Then for fixed «;;, the
distance |o;; — m| increases unless «; tracks m. Thus,
for subthreshold contributors j € [J, which typically have
a;; < mand v;(d) < 0, we get:

ag(m)l= agl= ) a;l= Zd),

JET,

implying that the subthreshold count decreases.
In the second case of Gaussian peak reweighting:

a;j = exp {—'y (a5 — m)z} ,

which symmetrically peaks at «;; = m and rapidly decays
as «;;; moves away from m. Suppose m increases. For fixed
@ij, again |a;; — m| increases and so a;; decreases and pe-
nalizes values further away from m. Thus, subthreshold to-
kens j € J, with mid- or low «;, get decreasing attention
as m increases. So again,

Z &;; } = Z;(d) 1 = subthreshold count | .
JETL

From these arguments, we have shown that under both
RCA reweighting strategies (inverse-distance and Gaussian
peaking), as m 1, subthreshold tokens j € J| receive less
attention mass so jeTL O/z?j 4, which increases the lower
bound of Condition (6). Thus, decreasing the number of
components z; that fall below ¥, as visualized in Fig. S9

d|S|(z)

< 0 as implied by Condition (6)
dm

where | S| is the number of subthreshold contributors. This
conclusion establishes that condition (6) supports a negative
relationship between the subthreshold count and the atten-
tion sharpness measure m, regardless of RCA variant used.
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