arXiv:2312.09783v3 [cs.LG] 19 Dec 2023

Supplementary Material of Paper:
Keep the Faith: Faithful Explanations in Convolutional Neural
Networks for Case-Based Reasoning

A Appendix
A.1 Derivation of ReLU1 Moments

We analytlcally derlve expectation E and variance V of a layer input mean p and variance o2 for ReLU1
for E(u,0) = [g(z)2¢(*5%) dw and variance V (i, 0) = [(g(z) — E(p,0))?L¢(*4£) do, with ¢ the standard
a:2
Gau551an probablhty density function ¢ = \/%6*7, the corresponding cumulative distribution function
= [¢(t)dt (Frey and Hinton 1999), and g(z) = ReLU1(z) defined as:

0, ifx <0,
ReLUl(z) = qz, if0<x <1,
1, ifx>1.

Note that this derivation can serve as a blueprint to derive mean and variance for any ReLU with an
upper bound by adapting the integration limits. We use color coding to emphasize where replaced equations
come from.

E(u,0) = /OO ReLU1(z >i¢<x;“>dm
/ ReLUl(z i () dx —l—/ ReLUl(x)1 / ReLUl(z ()dm

)dx.

/1 ~(°

1 _ 1 1
/ i@(x M)d:z: = f/ x¢(a + bx)dx, with a = —
0 0

1
’b:—
g

SRS

g g o

Eq.101 (Owen 1980) 1 1 !
= —[—z(¢a+bx) +ad(a+bx))]

g 0

g ag 0'1
x—ul
=1-®
)| _
1—p
=1-9 .
(—5)

V(o) = /Oo (ReLUl(x)_E(M,U))Q%qﬁ(x;'“)d
Let E(p,,(]): (.
Vg, o) = OO(ReLUl(w) 3 ,)gé(b(x;,u)dx
i — . P xr— o0 _
:/700*2§¢(950”)dz+ /U (J*ﬂ)zgo(Ul)dx+/1 (1__)2§¢($0M)dx
0 o, }
[ttt [Lt
= P e(-1)
/l (:1:7[5)2%@(;H)l
0
1 B) 1 R
:/0 %O(:l:fu)dx_k/o 72€1¥¢($€—/~L)dw+/{)’ i:(“‘*H)l

1

1

:—/ 22¢(a + br) dr, with a = —E, b=—
0 g g

1
£q.102 (Qwen 1980) l[b%((f + 1)®(a+ bzx) + (a — bx)p(a + bx))]

g 0
2 T — T T — !
= (L e - T T
2 T — T+ T — ! 0
= (G5 + D) -)|

1

= (1 +0")2(*F) —olw+ wo(——F)

0
= (2 + (L) — (o + o (L) — (2 + 0?)B(-L) + ou(- L)

= (1 + @) 0= L))~ (0 + oo 1) + ops(-L).

Jo © o o

1 -2 1 _
(o9
1_

= P(@(—5) ~a(-1)).

g

= (1 + @) 0 L))~ (0 + oo) 4 oL
~20(o(6(- 1) — 6L+ (e — e(-Ly)
e)]

[a-me
e [Tl p -
== [et

= (U2 — 2ufi + 02 + 21 — 1)@(1%)
—(u* — 2#ﬁ+02)@(—§)
- (/1,0'—2[1,0'-1-0')@5(1?7#)
+ (5o — 200)8(~)
+ i =2+ 1

A.2 Training, Dataset and Implementation Details

Model Architecture. For the backbones, we use the pre-trained feature extractors of ResNet50, ResNeXt50,
and Wide-ResNet50 provided by torchvision!. The resulting number of trainable parameters for ProtoPFaith

Ltorchvision is available at: https://github.com/pytorch/vision

are 24,314,816 (ResNet50), 23,786,688 (ResNeXt50), and 67,641,024 (Wide-ResNet50) for the models trained
on CUB-200-2011. ResNet follows the ResNet18 backbone with just one input channel. In the original
ResNet18, the number of channels is increased every two ResBlocks. We increase the capacity by adding
one additional ResBlock before every increase in the number of channels (the resulting number of trainable
parameters for ProtoPFaith is 17,825,528). The ConvNet is the same architecture as our ResNet but without
skip connections (the resulting number of trainable parameters for ProtoPFaith is 17,319,928).

Data. For CUB-200-2011 and Stanford Dogs, we use the official test set as a hold-out test set and randomly
split the training set into five folds stratified by the class label. For RSNA, we use the official training set
only. We split 20% for a hold-out test set, stratified by age, sex, and class labels. Additionally, we split the
remaining 80% into five folds. We resize all images to 224x224 resolution (bilinear interpolation).

Training Details and Evaluation. For ResNet50, ResNeXt50, and Wide-ResNet50, we initialize weights
of the encoder V with pre-trained weights of ImageNet-1k? provided by torchvision. We optimize with
AdamW (Loshchilov and Hutter 2017). Following the implementation of Chen et al. (2019), we first do
a warm-up of parameters of Z and () for ten epochs, starting at ——th of the initial learning and linearly
increasing every iteration to g—th of the initial learning rate. Then, we Cycle between optimizing all parameters
related to feature extraction (V, Z, @), and classification (F) for five and ten epochs, respectively. During
each of these cycles, we perform two learning rate scheduling cycles with the Cyclic Learning Rate Scheduler
provided by torchvsision (base learning rate of %—th of the initial Ir, max learning rate is the initial learning
rate, linear increase and decrease updated every iteration). We carry out a grid search for hyper-parameters
on one split of CUB-200-2011 with ResNet50 based on the validation balanced accuracy of the validation set
of this split. We follow the training routine proposed in Chen et al. (2019) and set the coefficients before
cluster L5y and separation cost Lgep to A\; = Ag = 0.5:

L(y,T)=Lce(y, FoQoZoV)())
+ /\lﬁclst (yv (Z o V)())
+ >\2£sep(y7 (Z © V)())7

Law(y, (ZoV)(T) = min | = zi,3,

k) 711

Laaply (Z0V)D) = _min_ [l = 2,13

with Lcg the cross-entropy loss and y the target label of the input image Z. Then, we re-train the model
with the best set of hyper-parameters five times (once on each training set of each split) with early stopping
for 1000 epochs. We use this hyper-parameter set to train for all models on CUB-200-2011 and Stanford
Dogs. The hyper-parameter search space is (fat numbers denote the best configuration):

e Learning Rate: [0.022, 0.01, 0.0022, 0.001, 0.00022, 0.0001]
e Weight Decay: [0.0, 0.001]

e (K) Prototypes per Class: [3, 5, 7]

e (L) Channels for Prototypes: [128, 256, 512|.

We apply random affine transformations (-25..25 degrees, shear of 15, probability of 1.0), followed by
random horizontal flip (probability of 0.5), resizing to 224x224 (bilinear interpolation), and normalization
(mean=[0.485, 0.456, 0.406], standard deviation=[0.229, 0.224, 0.225]).

For RSNA, we pre-train ConvNet and ResNet backbones five times (once on each training set of each
split) to yield five sets of pre-trained weights (one for each split), which prevents bias towards the validation
set. We use a learning rate of 0.001, weight decay of 0.0, and train for 100 epochs. Then, we carry out a
hyper-parameter grid search for ProtoPNet on one split (same search space as for CUB-200-2011) and re-train
with the best set of hyper-parameters five times (once on each training set of each split, for 100 epochs with
early stopping).

2TmageNet-1k is available at https://www.image-net.org/download.php

The best configuration for ConvNet is: Learning Rate of 0.0001, Weight Decay of 0.0, (K) Prototypes
per Class of 7, (L) Channels for Prototypes of 256. The best configuration for ResNet is: Learning Rate of
0.00022, Weight Decay of 0.0, (K) Prototypes per Class of 7, (L) Channels for Prototypes of 512. We apply
random affine transformations (-45..45 degrees, translation of -0.15..0.15% of the image size in each direction,
the scale of 85..115%, probability of 1.0), and rescale intensities to 0..1.

As we have five models for each architecture and dataset, we report the mean and standard deviation
of the balanced accuracy on the five validation sets and their performance on the test set. For each model
trained on CUB-200-2011 or Stanford Dogs, we randomly select 100 prototypes (total prototypes are 1000 and
600, respectively) and all 14 prototypes for models trained on RSNA. We create our proposed explanations
using 32 network evaluations per input feature for DASP (Ancona, Oztireli, and Gross 2019) (approximately
90 minutes per image on an NVIDIA A10040GB). We calculate the AOPC score by iterative removal of the
most important features, i.e., in every iteration, one more feature (the next, most important one) is replaced
with 0. Therefore, the evaluation of Eq. 10 is expected to decrease faster for higher-quality explanations.
Note that the squared L2-distance has its minimum at 0. As we evaluate the change in the input image of a

prototype, spe (Ig(?;c)) is zero and the whole Eq. 10 becomes negative for all steps.
(P

A.3 Additional Results

We report the Balanced Accuracy (mean and standard deviation in %) for all models and the datasets on
which they were evaluated in Tab. A1l. For all models, there is only marginal overfitting towards the validation
set (drop-off in performance is < 1% for all models). Note that ResNeXt50 outperforms Wide-ResNet50
on CUB-200-2011, while it lacks behind 0.6% on Stanford Dogs. ConvNet outperforms ResNet on RSNA.
Additionally, the drop-off in performance from the validation set to the test set is 1.4% for the ConvNet and
1.8% for the ResNet. Compared to ResNet, the standard deviation of ConvNet is +5.6% on the test set,
which indicates training instabilities w.r.t. the dataset split. While it can be argued that ResNet is more
stable in this regard, we can observe from Fig. Al that ResNet achieved a high test performance by just
learning a single prototype for one class. Therefore, this model should not be applied in clinical practice,
which is an important finding only enabled by the architecture of case-based reasoning.

Dataset Model Backbone Validation BAcc Test BAcc
CUB-200-2011 ResNeXt50 72.8 + 0.5 72.0 &+ 0.6
CUB-200-2011 ResNet50 70.8 = 1.1 69.8 + 0.8
CUB-200-2011 Wide-ResNet50 71.0 &= 0.9 70.2 +£ 0.7
Stanford Dogs ResNeXt50 84.1 + 0.3 83.4 + 0.6
Stanford Dogs ResNet50 81.0 + 0.6 80.4 + 0.5
Stanford Dogs Wide-ResNet50 84.1 + 1.0 84.0 £ 0.6
RSNA ConvNet 74.0 + 10.1 72.6 + 10.8
RSNA ResNet 73.7 + 4.1 71.9 £ 5.2

Table Al: Balanced Accuracy (BAcc) scores for the models evaluated in this work.

We show the AOPC for all evaluated models in Tab. A2 (lower numbers are better). In all cases, the
explanations given by ProtoPFaith outperform the explanations given by ProtoPNet by a factor >103. Note
that the training of ResNet on RSNA collapsed: The model learned only one prototype for one class and just
two prototypes for the other class (see Fig. Al). However, the model still achieved a Balanced Accuracy of
79.8%. The even bigger gap between explanations for this model shows a multiplicative effect with respect to
duplicate prototypes.

Dataset Model Explanation AOPC(QoZoV)

CUB-200-2011 ResNeXt50 ProtoPNet -0.000446
CUB-200-2011 ResNeXt50 ProtoPFaith -3.721184
CUB-200-2011 ResNet50 ProtoPNet -0.000223
CUB-200-2011 ResNet50 ProtoPFaith -2.848353
CUB-200-2011 Wide-ResNet50 ProtoPNet -0.000834
CUB-200-2011 Wide-ResNet50 ProtoPFaith -3.075180
Stanford Dogs ResNeXt50 ProtoPNet -0.001767
Stanford Dogs ResNeXt50 ProtoPFaith -1.850909
Stanford Dogs ResNet50 ProtoPNet -0.000516
Stanford Dogs ResNet50 ProtoPFaith -3.012445
Stanford Dogs Wide-ResNet50 ProtoPNet -0.000717
Stanford Dogs Wide-ResNet50 ProtoPFaith -3.006323
RSNA ConvNet ProtoPNet -0.001360
RSNA ConvNet ProtoPFaith -8.816450
RSNA ResNet ProtoPNet -0.000012
RSNA ResNet ProtoPFaith -31.912595

Table A2: Area Over the Perturbation Curve (AOPC) scores for the models evaluated in this work.

A.4 Additional Visualization of Explanations

We perform forward passes for all architectures evaluated in this work and visualize the explanations. This is
a ResNet in Fig. A1l and a ConvNet in Fig. A2 on the RSNA dataset. On the Standford Dogs dataset, this is
a Wide-ResNet50 in Fig. A3, a ResNeXt50 in Fig. A4, and a ResNet50 in Fig. A5. On the CUB-200-2011
dataset, this is a Wide-ResNet50 in Fig. A6, a ResNeXt50 in Fig. A7, and a ResNet50 in Fig. A8. All figures
follow the structure presented in the top left of Fig. 3.

We can see in Fig. Al that the prototypes collapsed during training as there are only three prototypes
learned in total. The explanations given by ProtoPNet show high activation for a lot of background of the
test sample. In contrast, the ProtoPFaith extracts explanations that lie within the torso. Additionally, they
distinguish between the lung and other parts of the image. The same accounts for ConvNet trained on RSNA
(see Fig. A2), where some explanations given by ProtoPFaith discard the rips. In contrast to ResNet, the
explanations show that the model learned local features, as most of the input image has little effect on the
Shapley value. However, the explanations given by ProtoPNet are mostly in the background. For models
trained on Stanford Dogs (see Fig. A3-A5), the explanations given by ProtoPNet again suggest locality.
ProtoPFaith extracts explanations across the whole input domain, but the contours or body parts of the
dogs are clearly visible for most explanations. On CUB-200-2011 (see Fig. A6-A8), explanations given by
ProtoPFaith show a bias towards the background, which is also the case for some explanations of ProtoPNet.
Like the explanations for the models trained on Stanford Dogs, the explanations of ProtoPFaith highlight the
contours or body parts of birds, like the head, tail, or beak.

In summary, ProtoPNet extracts misleading local explanations, and ProtoPFaith extracts granular, faithful
explanations. This prohibits the extraction of crops of the input image for visualization of prototypes, but
the explanations of ProtoPFaith faithfully show how the model transformed the input and what lead to the
model prediction. Additionally, granularity showed benefits when applied to medical images.

-
-

G
i
H \

b
P I .
D Re

|

i
\ N FIRAE

Figure Al: Explanations of the forward pass of a sample with ResNet trained for pneumonia detection
on RSNA. We explain the layout of each explanation in the top left with formal notation (left to right,
top to bottom): (1) explanation of ProtoPNet for the occurrence of a prototype within the test image; (2)
explanation of ProtoPNet for the activation of an image, from which a prototype was extracted; (3) test
image; (4) training image, from which the prototype was extracted; (5) explanation of ProtoPFaith for the
occurrence of a prototype within the test image; (6) explanation of ProtoPFaith about the image, from which
the prototype was extracted.

N——
H
-

’ \i ;
Figure A2: Explanations of the forward pass of a sample with ConvNet trained for pneumonia detection
on RSNA. We explain the layout of each explanation in the top left with formal notation (left to right,
top to bottom): (1) explanation of ProtoPNet for the occurrence of a prototype within the test image; (2)
explanation of ProtoPNet for the activation of an image, from which a prototype was extracted; (3) test
image; (4) training image, from which the prototype was extracted; (5) explanation of ProtoPFaith for the

occurrence of a prototype within the test image; (6) explanation of ProtoPFaith about the image, from which
the prototype was extracted.

n .n .n&max
min

-L

0

L

Figure A3: Explanations of the forward pass of a sample with Wide-ResNet50 trained for dog classification.
We explain the layout of each explanation in the top left with formal notation (left to right, top to bottom):
(1) explanation of ProtoPNet for the occurrence of a prototype within the test image; (2) explanation of
ProtoPNet for the activation of an image, from which a prototype was extracted; (3) test image; (4) training
image, from which the prototype was extracted; (5) explanation of ProtoPFaith for the occurrence of a
prototype within the test image; (6) explanation of ProtoPFaith about the image, from which the prototype
was extracted.

Figure A4: Explanations of the forward pass of a sample with ResNeXt50 trained for dog classification.
We explain the layout of each explanation in the top left with formal notation (left to right, top to bottom):
(1) explanation of ProtoPNet for the occurrence of a prototype within the test image; (2) explanation of
ProtoPNet for the activation of an image, from which a prototype was extracted; (3) test image; (4) training
image, from which the prototype was extracted; (5) explanation of ProtoPFaith for the occurrence of a
prototype within the test image; (6) explanation of ProtoPFaith about the image, from which the prototype
was extracted.

10

A

W

. |
. e

CECBERE

Figure A5: Explanations of the forward pass of a sample with ResNet50 trained for dog classification.
We explain the layout of each explanation in the top left with formal notation (left to right, top to bottom):
(1) explanation of ProtoPNet for the occurrence of a prototype within the test image; (2) explanation of
ProtoPNet for the activation of an image, from which a prototype was extracted; (3) test image; (4) training
image, from which the prototype was extracted; (5) explanation of ProtoPFaith for the occurrence of a
prototype within the test image; (6) explanation of ProtoPFaith about the image, from which the prototype
was extracted.

11

Figure A6: Explanations of the forward pass of a sample with Wide-ResNet50 trained for bird clas-
sification. We explain the layout of each explanation in the top left with formal notation (left to right,
top to bottom): (1) explanation of ProtoPNet for the occurrence of a prototype within the test image; (2)
explanation of ProtoPNet for the activation of an image, from which a prototype was extracted; (3) test
image; (4) training image, from which the prototype was extracted; (5) explanation of ProtoPFaith for the
occurrence of a prototype within the test image; (6) explanation of ProtoPFaith about the image, from which
the prototype was extracted.

12

Figure A7: Explanations of the forward pass of a sample with ResNeXt50 trained for bird classification.
We explain the layout of each explanation in the top left with formal notation (left to right, top to bottom):
(1) explanation of ProtoPNet for the occurrence of a prototype within the test image; (2) explanation of
ProtoPNet for the activation of an image, from which a prototype was extracted; (3) test image; (4) training
image, from which the prototype was extracted; (5) explanation of ProtoPFaith for the occurrence of a
prototype within the test image; (6) explanation of ProtoPFaith about the image, from which the prototype
was extracted.

13

Figure AS8: Explanations of the forward pass of a sample with ResNet50 trained for bird classification.
We explain the layout of each explanation in the top left with formal notation (left to right, top to bottom):
(1) explanation of ProtoPNet for the occurrence of a prototype within the test image; (2) explanation of
ProtoPNet for the activation of an image, from which a prototype was extracted; (3) test image; (4) training
image, from which the prototype was extracted; (5) explanation of ProtoPFaith for the occurrence of a
prototype within the test image; (6) explanation of ProtoPFaith about the image, from which the prototype
was extracted.

14

References

Marco Ancona, Cengiz Ogztireli, and Markus Gross. Explaining deep neural networks with a polynomial
time algorithm for shapley value approximation. In International Conference on Machine Learning, pages
272-281. PMLR, 2019.

Chaofan Chen, Oscar Li, Daniel Tao, et al. This Looks Like That: Deep Learning for Interpretable Image
Recognition. In NeurIPS, volume 32, 2019.

Brendan J Frey and Geoffrey E Hinton. Variational learning in nonlinear gaussian belief networks. Neural
Computation, 11(1):193-213, 1999.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101,
2017.

D. B. Owen. A table of normal integrals. Communications in Statistics - Simulation and Computation, 9(4):
389-419, 1980. doi: 10.1080/03610918008812164. URL https://doi.org/10.1080/03610918008812164.

15

