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Abstract. A major challenge in developing data-driven algorithms for
medical imaging is the limited size of available datasets. Furthermore,
these datasets often suffer from inter-site heterogeneity caused by the
use of different scanners and scanning protocols. These factors may con-
tribute to overfitting, which undermines the generalization ability and
robustness of deep learning classification models in the medical domain,
leading to inadequate performance in real-world applications. To ad-
dress these challenges and mitigate overfitting, we propose a frame-
work which incorporates explanation supervision during training of Vi-
sion Transformer (ViT) models for image classification. Our approach
leverages foreground masks of the class object during training to regu-
larize attribution maps extracted from ViT, encouraging the model to
focus on relevant image regions and make predictions based on per-
tinent features. We introduce a new method for generating explana-
tory attribution maps from ViT-based models and construct a dual-loss
function that combines a conventional classification loss with a term
that regularizes attribution maps. Our approach demonstrates superior
performance over existing methods on two challenging medical imag-
ing datasets, highlighting its effectiveness in the medical domain and
its potential for application in other fields. Source code is available at:
https://github.com/sagibe/LGMViT

Keywords: Explainability · Explainable AI · Vision Transformer· At-
tention · Medical imaging · Explanation supervision · Image classification

1 Introduction

In recent years, deep neural networks (DNNs) have achieved impressive results
on a variety of computer vision tasks, from image classification and object detec-
tion to semantic segmentation and image generation. However, their black-box

https://orcid.org/0009-0003-2683-9875
https://orcid.org/0000-0003-1436-2275
https://github.com/sagibe/LGMViT


2 S. Ben Itzhak et al.

nature and ever-increasing complexity make their inner workings hard to under-
stand. This sparked a surge of interest in explainable AI (XAI) that provides
human-understandable justifications for model behavior [4,9,15,17,22,28,29]. In
computer vision, explainability methods typically involve attributing the predic-
tion to relevant parts of the input image, providing insights into the underlying
mechanisms and features that contribute to the output. Those usually come in
the form of attribution maps derived from the model which can serve as spa-
tial explanatory cues. Extensive research has been devoted to the development
of effective methods for extracting indicative attribution maps [2–4, 21, 30, 36].
These methods encompass various approaches such as gradient-based techniques
commonly used for Convolutional Neural Networks (CNNs) [5, 26, 31, 32], and
attention-based methods in Vision Transformer (ViT) architectures [2, 18].

A major challenge to the development of data-driven algorithms in the medi-
cal domain is the limited size of the available datasets [20], largely due to the high
cost and complexity of annotating medical data. Combining data from multiple
sources, e.g. distinct institutions, imaging equipment, and scanning protocols,
may prove challenging due to the resulting presence of distinct imaging fea-
tures. These features, induced by non-biologic causes, may contribute to overfit-
ting [13,35,37]. Consequently, DNNs trained on medical datasets are susceptible
to overfitting, a phenomenon that ultimately undermines their ability to gener-
alize effectively, leading to limited performance in real-world applications.

Since the advent of DNNs, many regularization methods have been proposed
to mitigate overfitting [25]. One of the recent approaches is to regularize explana-
tory cues obtained from the model during training to improve generalization.
For image classification models, this strategy may be implemented by guiding
attribution maps derived from the model to align with foreground masks of the
traget object associated with the class label of the image. By introducing these
foreground masks during training, even for a limited subset of the dataset, we
enforce consistency between the model’s explanatory signals and the location of
the class object. This, in turn, “directs” the model’s focus to the relevant part of
the image, encouraging it to make correct predictions “for the right reasons” [27].
These masks can be acquired through manual spatial annotations, such as seg-
mentation or bounding boxes, or automatically generated by techniques such as
self-supervision [12].

While several studies have explored the use of ground truth localization anno-
tations to regularize attribution maps in image classification models, the applica-
tion of these techniques to ViT-based models remains an area with untapped po-
tential. In this work we introduce a framework termed LGM-ViT (Localization-
Guided Medical Vision Transformer), designed for explanation supervision in
ViT-based classification models for medical imaging. Following the strategy de-
scribed above, we devise a framework which utilizes foreground masks during
training to regularize attribution maps extracted from ViT. We introduce a
novel approach to generate an explanatory attribution map using both the at-
tention matrices and the output embeddings from the final block of the ViT
encoder. We construct a loss function comprised of two loss terms: the first term



Localization-Guided Supervision for Medical Image Classification by ViT 3

is a conventional classification loss function, while the second term regularizes
attribution maps using foreground masks.

The main contributions of our work are as follows:

– Introducing a general framework for training ViT-based classification models
using explanation supervision. While this study focuses on medical imaging
datasets, this framework can be applied to other domains.

– Proposing a new method for deriving attribution maps from ViT-based mod-
els, tailored for explanation supervision in image classification.

– Conducting comprehensive experiments to validate the effectiveness of the
proposed framework. Quantitative results demonstrate the superiority of our
approach over existing methods. Qualitative results illustrate the impact of
our approach on the model’s decision-making process.

2 Related Work

Attribution Methods in computer vision have evolved to provide deeper in-
sights from model decision-making processes [4, 18, 21]. Specifically for ViTs,
there are a few methods that are noteworthy. In [1] the attention rollout tech-
nique captures attention information from all ViT blocks by extracting attention
maps from every ViT encoder block, and condensing the attention heads within
each block into a unified map (e.g., through averaging). Subsequently, the maps
obtained from all the blocks are combined through multiplication. The Layer-
wise Relevance Propagation (LRP) method [24] propagates relevance attributed
to the predicted class across the network layers backward to the input image
to create a relevancy map. The LRP is extended in the GAE method [10, 11]
by extracting the map from each layer based on the attention heads and their
gradients.
Explanation Supervision methods have demonstrated their effectiveness in el-
evating the performance and resilience of Deep Neural Networks (DNNs) across
diverse domains and tasks. Specifically for image classification tasks, several
studies have explored using ground truth localization annotations to regular-
ize attribution maps in CNN-based classification models [16, 27, 33]. In [27], a
method is introduced to efficiently explain and regularize differentiable models
by selectively penalizing their input gradients. In [33], saliency maps inferred
from the classifier gradients are penalized when these demonstrate poor consis-
tency with lesion segmentation. In [16], an explanation loss is proposed to handle
inaccurate boundaries, incomplete regions, as well as the inconsistent distribu-
tion of human annotations. Most related to our work is RobustViT proposed
in [12] which applies explanation supervision to ViT-based models. The authors
introduce an explanation loss that regularizes GAE maps [10] from ViT-based
models using masks of the target object to improve their robustness.



4 S. Ben Itzhak et al.

3 Method

The proposed LGM-ViT framework aims to boost performance of ViT-based
classification models by performing localization supervision using foreground
masks of the class object during training. In this view, we propose a novel ap-
proach for deriving spatial attribution maps from ViT-based models termed
EAFEM (Embedding-Attention Fused Explanation Map), and construct a loss
function that promotes consistency between EAFEM maps and their correspond-
ing foreground masks. This strategy guides the model’s attention to the relevant
parts of the image, promoting accurate predictions based on meaningful features
that benefit generalization and model robustness.

3.1 Vision Transformer Architecture

ViT-based models typically consist of three fundamental components: a patch
embedding module, a sequence of ViT encoder blocks, and a task-specific head
module. Let I ∈ RC×H×W be the input image to the model, where C is the
number of channels (e.g. 3 for RGB images), and H, W are the height and width
of the input image, respectively. The input I is divided into non-overlapping
patches of size p × p, and fed to the patch embedding module that linearly
projects each patch into a 1D token embedding with dimension d. To preserve
the positional information of the patches, positional encoding is added to each
embedding vector. Following [14], a special classification token, referred to as
CLS token, is added. This results in t = H

p × W
p +1 tokens of dimension d, each

representing a patch in the original image, except the CLS token which learns
to store class-related information during training. The output of this module is
an embedding matrix E(0) ∈ Rt×d, where the first row is the CLS token, and
each remaining row (i.e. token) represents a specific patch originating from the
input image.

The embeddings matrix E(0) is fed to a sequence of n ViT encoder blocks.
Each block is composed of a multi-head self-attention (MSA) module followed by
a multilayer perceptron (MLP). The MSA module functions within a subspace
dh of the embedding dimension d, such that dh · h = d, where h is the number
of heads. The self-attention operation of the kth head (k ∈ [1, ..., h]) in the jth

block (j ∈ [1, ..., n]) is defined as follows:

A
(j)
k = softmax(

Q
(j)
k ·K(j)T

k√
dh

) (1)

Z
(j)
k = A

(j)
k · V (j)

k (2)

where the (·) operation denotes matrix multiplication. Q(j)
k ,K

(j)
k , V

(j)
k ∈ Rt×dh

are sub-spaces of Q(j),K(j), V (j) ∈ Rt×d (referred to as queries, keys and values)
which are three different linear projections of E(j−1), the output embeddings
from the previous block. A(j)

k ∈ Rt×t is the attention matrix of the kth head in
the jth block, representing the pair-wise relations between each two tokens. We
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denote A(j) ∈ Rh×t×t as the stacked attention matrices of block j. Z(j)
k ∈ Rt×dh is

the output of the self-attention module of the kth head in the jth block. The final
output of the MSA module is Z(j) ∈ Rt×d, the concatenation of {Z(j)

1 , ..., Z
(j)
h }.

The output Z(j) is then fed to an MLP with one hidden layer. In every ViT
block a Layernorm (LN) is applied before each of the two modules (MSA, and
MLP), and a residual connection is added after each module. The operations
applied in the ViT block can be formulated as follows:

Z(j) = MSA(LN(E(j−1))) (3)

Z
(j)
SC = Z(j) + E(j−1) (4)

E(j) = MLP(LN(Z
(j)
SC)) + Z

(j)
SC (5)

where E(j−1) is the output of the previous ViT block, and Z
(j)
SC stands for the

MSA output after adding the skip connection (SC). The structure of the ViT
block is illustrated in Fig. 1. The classification head adopted in [14] is an MLP
with one hidden layer (not shown in Fig. 1). The input to the MLP head is
the CLS embedding token extracted from E(n) (Eq. 5), the output of the final
ViT block. For a more detailed explanation of the Transformer architecture, the
readers are referred to [14,34].

3.2 Attribution Map

The proposed EAFEM method for extracting attribution maps from ViT models
utilizes both the attention matrices and the output embeddings from the final
ViT block of the model as input sources for the generation of explanatory maps.
Each input source is processed separately to generate a spatial attribution map.
The attention-based and the embedding-based maps are then fused to obtain the
final attribution map referred to as EAFEM. By combining attention information
with feature representations, EAFEM offers a comprehensive understanding of
how ViT models process visual data and arrive at their decisions. Attention and
embedding-based maps are detailed in the following subsections.

Attention-Based Map. An overview of the attention-based map extraction
process is given in Fig. 1a. We extract A(n) ∈ Rh×t×t, the attention matrices
(Eq. 1) from the final ViT block. Each row in the attention matrix A

(n)
k ∈ Rt×t

corresponds to a specific token, capturing the pairwise connections between that
token and all the others. For instance, the ith row represents the relations be-
tween the ith token and the other tokens, with the diagonal element (i, i) sig-
nifying the relationship of the token with itself. We extract the first row, cor-
responding to the CLS token, for each of the h attentions matrices, while dis-
carding the diagonal element (0, 0). This results in A

(n)
CLS ∈ Rh×(t−1), describing
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Fig. 1: Overview of (a) the attention-based map, (b) the embedding-based map and
(c) EAFEM extraction processes.
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the relations between the CLS token and the tokens corresponding to the in-
put image patches. By observing from the patch embedding process (Sec. 3.1)
that t − 1 = H

p × W
p , A

(n)
CLS can be conveniently reshaped to the spatial ori-

entation of the input image, leading to the multi-head (mh) spatial attention
maps, A(n)

mh ∈ Rh×H
p ×W

p . Eventually, a single attention map is obtained by aver-
aging A

(n)
mh along the heads dimension resulting in A

(n)
spatial ∈ R

H
p ×W

p . The final
attention-based map Mattn ∈ RH×W , is obtained by bi-linear interpolation of
A

(n)
spatial to the size of the input image.

Embedding-Based Map. An overview of the embedding-based map extrac-
tion process is given in Fig. 1b. To generate the embedding-based map, we ex-
tract E(n) ∈ Rt×d, the output of the final ViT block (Eq. 5). We first discard
the CLS token from E(n), resulting in E

(n)
noCLS ∈ R(t−1)×d. Then, as previously

done for the attention-based map, E(n)
noCLS is reshaped to the spatial orientation

of the input image, resulting in the embedding-based spatial maps denoted by
E

(n)
spatial ∈ R

H
p ×W

p ×d. Similarly to the attention-based map, the final embedding-
based map Membed ∈ RH×W is obtained by averaging along the embedding
dimension (d) followed by a bi-linear interpolation to the input image size.

Fusion of the Embedding and Attention Maps. The EAFEM is the
weighted mean of the attention-based and embedding-based maps:

Mfusion = βMattn + (1− β)Membed (6)

where Mfusion is the EAFEM, and 0 ≤ β ≤ 1 ∈ R is a hyperparameter of the
model. An overview of the EAFEM process is depicted in Fig.1c.

3.3 Loss Function

The proposed loss function is composed of two terms. The first term is dedicated
to optimizing class prediction. The second term is designed to foster consistency
between the attribution maps derived from the model and the foreground masks
of the class object. In other words, the first term encourages the model to make
correct predictions, improving overall accuracy, while the second term encour-
ages the model to make correct predictions “for the right reasons”, enhancing
generalization and robustness.

For the first term, we employ the Binary Cross-Entropy (BCE) loss function:

Lcls = BCE(ϕ(x), y) (7)

where x is the input image, ϕ(x) ∈ [0, 1] is the prediction of the model, and
y ∈ {0, 1} is the binary ground truth class.

For the second term, we employ the Kullback–Leibler divergence (KL) loss
function:

KL(ypred, ytrue) = Mean
(
ytrue ⊙ (log(ytrue)− log(ypred))

)
(8)
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where the ⊙ operation denotes the Hadamard product and the Mean operation
computes the mean value of the point-wise KL divergence distance map. This
function is applied on the attribution map derived from the model and the
foreground mask of the class object. 2D Softmax normalization is applied to the
attribution map. Following [33], Gaussian smoothing is applied to the binary
foreground masks:

Lloc = KL(Softmax(Mexp), smth(Mfg)) (9)

where the Softmax operation is 2D Softmax normalization, the smth operation
is Gaussian smoothing, Mexp is the attribution map derived from the model,
and Mfg is the foreground mask of the class object. In our framework we use the
EAFEM (Eq. 6) introduced in Sec. 3.2 as the attribution map. The localization
loss term can be applied to the whole training set or to a subset of it. For
training samples having no foreground masks of the class object, or samples in
which the class object is absent (e.g. lesion-free slices in medical imaging datasets
of lesions), we have Lloc = 0. The complete loss function is formulated as:

Ltotal = Lcls + λlocLloc (10)

where λloc is a hyperparameter of the model. An overview of the LGM-ViT loss
is illustrated in Fig. 2.

Foreground Mask

Input Image
EAFEM

Smoothed FG Mask

Gaussian Smoothing

GT Class
{0 , 1}

Prediction
[0 , 1]

⨁ Total Loss

∙ 𝝀KL Divergence 
Loss

BCE Loss

Classification 
Model

Fig. 2: An overview of the LGM-ViT loss. The input image is fed into the classification
model along with the ground truth label and the foreground mask of the class object (if
available). The EAFEM and the prediction are extracted from the model. The former is
inserted to the localization loss (KL) with a smoothed version of the foreground mask,
while the latter is fed to the classification loss (BCE) with the ground truth label. The
total loss is the weighted sum of the two loss values, specified by λ.
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4 Experiments

We validate the proposed LGM-ViT framework on a binary classification task
for two medical imaging datasets for which segmentation ground truth is avail-
able. Segmentation annotations are used as foreground masks for the localization
supervision (Eq. 9). The vanilla ViT-B/16 [14] is chosen as the baseline model
for all the experiments.

4.1 Datasets

BraTS2020. The Brain Tumor Segmentation Challenge 2020 dataset
(BraTS2020) [6, 7, 23] is a widely used and comprehensive collection of mul-
timodal magnetic resonance imaging (MRI) brain scans, designed for the evalu-
ation of brain tumor segmentation algorithms. The public training set contains
369 cases, collected from 19 institutions, that were acquired with different pro-
tocols, magnetic field strengths, and MRI manufacturers. For each case, four
MRI contrasts are provided: a native T1-weighted (T1), a post-contrast T1-
weighted (T1ce), a T2-weighted (T2), and a T2 Fluid-Attenuated Inversion Re-
covery (FLAIR). In this work we use T1, T2, and FLAIR as 3-channel inputs
to our models. Preprocessing included co-registration to the T1 modality, skull
stripping, and resampling to 1 × 1 × 1mm3 isotropic resolution, resulting in a
common scan size of 155 × 240 × 240mm3 . We refer to the first dimension as
slices, and to each slice as distinct model input, such that each input scan com-
prises 155 slices of dimension 240 × 240 and the classification model outputs a
class prediction for each slice. Annotations provided to each scan consist of four
classes: background and healthy tissue (class 0), necrotic and non-enhancing tu-
mor core (NCR/NET - class 1), peritumoral edema (ED - class 2), and enhancing
tumor (ET - class 4). Each voxel from the scan is attributed to a single class.
In this work we combine classes 1, 2 and 4 into a single non-healthy class. This
results in a 2D binary segmentation mask for each slice in the scan, where the
0 class represents background and healthy tissue and the 1 label represents the
non-healthy tissue. In addition, since our task is classification per slice, binary
ground truth classification labels were assigned to each slice based on its binary
segmentation mask (if the sum of the mask was greater than 0 then the class
label of the slice is 1, otherwise the class label is 0). For our experiments we
randomly split the public training set of this dataset to training, validation and
test sets using 70%-10%-20% ratio.

LiTS17. The Liver Tumor Segmentation Challenge 2017 dataset (LiTS17) [8]
is a collection of contrast-enhanced 3D abdominal computed tomography (CT)
scans used as a benchmark for liver and liver tumor segmentation. The train-
ing set contains 131 cases collected from seven clinical sites and acquired with
different protocols and manufacturers. The number of slices in each scan ranges
from 75 to 987 with a spatial resolution of 512× 512 for each slice. The in-plane
resolution varies from 0.55mm to 1mm, and the slice spacing between 0.45mm
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Table 1: Binary classification evaluation on the ViT-B/16 [14] model for BraTS2020
and LiTs17 test sets. We compare the performance of our method against the vanilla
ViT-B/16 (Baseline), and three competing methods; GradMask [33], RobustViT [12]
and RES-G/L [16]. The results present the mean and standard deviation over three
runs with different seeds. Best results are marked in bold.

Dataset Method F1 Score Accuracy AUROC AP Cohens
Kappa

Baseline 89.5±0.13 91.2±0.19 96.7±0.20 96.5±0.15 81.9±0.33
GradMask [33] 89.8±0.24 91.4±0.35 96.7±0.12 96.6±0.05 82.4±0.65

BraTS2020 RobustViT [12] 89.8±0.36 91.3±0.30 96.9±0.04 96.8±0.03 82.2±0.61
RES-G [16] 90.3±0.58 91.8±0.38 96.9±0.43 96.8±0.39 83.1±0.84
RES-L [16] 89.6±0.30 91.1±0.23 96.6±0.04 96.6±0.07 81.8±0.48

LGM-ViT (Ours) 91.4±0.14 92.8±0.14 97.3±0.09 97.4±0.07 85.3±0.26

Baseline 79.1±0.71 84.7±1.39 93.3±0.51 90.1±1.08 67.0±2.14
GradMask [33] 81.6±1.81 87.1±1.58 93.7±1.07 90.8±1.44 71.7±3.13

LiTS17 RobustViT [12] 80.2±0.32 86.6±0.11 93.3±0.34 89.8±0.33 70.0±0.34
RES-G [16] 82.0±1.58 87.4±1.16 94.0±0.97 90.1±1.56 72.3±2.48
RES-L [16] 80.3±2.18 85.5±1.58 92.6±1.68 88.1±3.77 68.8±3.34

LGM-ViT (Ours) 88.8±0.57 92.2±0.56 97.2±0.24 96.0±0.22 82.8±1.07

and 6mm. For each scan, liver and liver tumor annotations are provided. In
this work we only use the liver segmentation annotations which are in the form
of 2D binary masks of the liver for each slice. Following the same methodol-
ogy applied on the BraTS2020 dataset, binary ground truth classification labels
were assigned to each slice based on its binary segmentation mask. Note that
in this experiment we focus on the presence/absence of an organ (the liver) in
each input slice, and not that of a tumor as in the previous BraTS2020-based
experiment. The public training set of this dataset was divided into training,
validation and test sets using 70%-10%-20% ratio.

4.2 Implementation Details

Baseline Model. We use the ViT-B/16 [14] as our baseline model for all our ex-
periments. The ViT-B/16 model employs a square patch embedding with patch
size of 16, and is composed of 12 sequential ViT encoder blocks with embedding
size of 768 and 12 attention heads.
Training. The proposed framework is implemented with PyTorch. Experiments
on the BraTS2020 dataset were trained on a single RTX 3090 GPU and ex-
periments on the LiTS17 dataset were trained on a single RTX 5000 GPU. All
models were trained from scratch for 25 epochs using ADAM optimizer [19] with
an initial learning rate of 0.00001 and a cosine learning rate decay scheduler to
a minimum rate of 0.0000001. For both datasets we used a batch size of 32 and
resized the input slices to 256× 256. The weighting parameter β (Eq. 6) of the
EAFEM was optimized using a non-uniform grid search scheme between 0 and 1.
The weighting parameter λloc (Eq. 10) of the loss function was optimized using
a non-uniform grid search scheme between 0.01 and 5000. For the BraTS2020
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model the β parameter was set to 0.85 and the λloc to 1000. For the LiTS17
model the β and λloc were set to 0.95 and 250, respectively.

4.3 Competing Methods

We compared the proposed method to the vanilla ViT-B/16, as well as to its
enhanced implementations applying three existing methods used for explana-
tion supervision in image classification: GradMask [33], RobustViT [12], and
RES [16]. All the compared methods, applied to ViT-B/16, were trained under
the same settings as the LGM-ViT. For comparison fairness, the weighting pa-
rameter λloc was optimized for each of the competing methods using the same
scheme employed in the LGM-ViT experiments. In addition, since gradient-based
methods are less stable for transformer-based models [3, 12], we replaced the
gradient-based maps used for supervision in GradMask [33] and RES [16] with
the GAE [10] method employed in RobustViT [12].

4.4 Results

Quantitative Results. Table 1 presents the performance of the proposed
LGM-ViT method, alongside the competing approaches, applied to the ViT-
B/16 model [14]. We evaluated on two distinct binary classification tasks: (per
slice) lesion presence classification using the BraTS2020 dataset and (per slice)
liver (organ) presence classification using the LiTS17 dataset. The results rep-
resent the average performance over three runs with different seeds. LGM-ViT
consistently outperformed all other methods on both datasets across all the eval-
uation metrics. On the BraTS2020 dataset, our approach achieved an F1 score
of 91.4%, accuracy of 92.8%, and an AUROC of 97.3%. This represents an im-
provement of 1.9%, 1.6%, and 0.6%, respectively, over the baseline ViT model,
and an improvement of 1.1%, 1.0%, and 0.4%, respectively, over the next best
method (RES-G). LGM-ViT also demonstrated superior performance in terms of
Average Precision (97.4%) and Cohen’s Kappa (85.3%), surpassing both baseline
and competing methods.

The performance gains were even more pronounced on the LiTS17 dataset.
LGM-ViT achieved an F1 score of 88.8%, marking a substantial improvement
of 9.7% over the baseline ViT and 6.8% over the next best method (RES-G).
Similarly, our method attained the highest accuracy (92.2%), AUROC (97.2%),
Average Precision (96.0%), and Cohen’s Kappa (82.8%) among all compared
approaches. The improvements over the baseline ViT were particularly signifi-
cant, with increases of 7.5%, 3.9%, 5.9%, and 15.8% in accuracy, AUROC, AP,
and Cohen’s Kappa, respectively. These results demonstrate the effectiveness of
LGM-ViT, highlighting its superior ability to enhance the classification capabil-
ities of Vision Transformers in medical imaging applications.

Qualitative Results. In Fig. 3 examples of true positive slices from the
BraTS2022 training set are shown. The ground truth annotations (in magenta)
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Table 2: Binary classification evaluation for the LGM-ViT with different attribution
methods on the LiTS17 test set. The results present the mean and standard deviation
over three runs with different seeds. Best results are marked in bold.

Attribution Method F1 Score Accuracy AUROC AP Cohens
Kappa

None (Baseline) 79.1±0.71 84.7±1.39 93.3±0.51 90.1±1.08 67.0±2.14
Rollout Attention 86.2±0.26 90.3±0.08 96.1±0.21 94.0±0.29 78.7±0.25

GAE 84.3±1.13 88.6±1.34 95.4±0.44 93.2±0.53 75.4±2.37

Attention-based Map 82.8±0.63 87.9±0.63 94.3±0.34 92.3±0.55 73.5±1.18
Embeddings-based Map 87.5±0.71 91.3±0.34 96.3±0.59 95.2±0.67 80.8±0.89

EAFEM 88.8±0.57 92.2±0.56 97.2±0.24 96.0±0.22 82.8±1.07

and the attention maps of the final block of the ViT are superimposed on top
of the input slices. Both the LGM-ViT and the baseline model accurately classi-
fied all examples as positive. However, we observe that the correlation between
the ground-truth lesion annotations and the attention maps for the LGM-ViT
is high, indicating that the LGM-ViT based its prediction on the actual area
of the lesion. In contrast, the baseline model’s attention maps show weak cor-
relation with the lesion annotations, indicating that it may be relying on other,
potentially less relevant, features for classification. This ability of the LGM-ViT
to “attend” to the correct anatomical features suggests that it has developed
a more robust understanding of the task. By basing its decisions on the most
relevant information, the LGM-ViT learns during training to make correct pre-
dictions “for the right reasons” enhancing generalization leading to a more robust
model.

4.5 Ablation Study

To evaluate the contribution of the EAFEM in LGM-ViT, we conduct an ab-
lation study by replacing it with two leading attribution methods for vision
transformers: rollout attention [1] and GAE [10]. Additionally, we replaced the
EAFEM with the attention-based and embedding-based maps (Sec. 3.2) sepa-
rately. We evaluate the LGM-ViT with EAFEM, and the four alternative attri-
bution methods on the LiTS17 dataset. The results are shown in Table 2. The
LGM-ViT with the EAFEM outperforms all other attribution methods across
all evaluation metrics.

Finally, we assess the impact of the number of scans used for localization su-
pervision during training. Fig. 4 shows the F1 score, accuracy, and AUROC for
LGM-ViT as a function of the percentage of training scans used for localization
supervision. The results indicate that localization supervision can significantly
improve performance even when applied to a limited subset of the training data.
Interestingly, while results on the LiTS17 dataset show a gradual increase in per-
formance with more data for localization supervision, on the BraTS2020 dataset
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Fig. 3: Examples from the BraTS2022 training set of true positive slices correctly
classified by the LGM-ViT and the baseline model. The ground truth annotations (in
magenta) and the attention maps of the final block of the ViT are superimposed on
top of the input slices.
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Fig. 4: F1 score, accuracy and AUROC for the LGM-ViT on the BraTS2020 and
LiTS17 test sets as a function of the percentage of training scans used for localization
supervision during training.

we reach a performance plateau after using only one-third of the data. This sug-
gests that in some cases, localization annotations (used for foreground masks
during training) for a small subset of the dataset may be sufficient to maximize
the benefits of localization supervision in image classification tasks.

5 Conclusions

In this work we introduced LGM-ViT, a framework designed to enhance the per-
formance and robustness of Vision Transformer models in medical image classi-
fication tasks through localization-guided supervision. Our approach integrates
a novel method for generating indicative attribution maps with a loss function
that promotes consistency between these maps and foreground masks of the
class object during training. Experimental results on two challenging medical
imaging datasets demonstrate the effectiveness of our approach, underscoring
the benefits of localization supervision. LGM-ViT marks a significant advance-
ment in applying Vision Transformers to medical image classification, offering
improved performance, interpretability, and robustness. These qualities are es-
sential for developing reliable and trustworthy AI systems in healthcare, where
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the stakes are high, and the need for accurate and explainable decision-making
is paramount. Although this study is limited to binary classification within the
medical domain, our approach is applicable beyond these boundaries. In future
research, validation will be extended to multiclass classification, and applied on
additional datasets from various domains. Furthermore, the methodology devel-
oped in this work can be utilized in applications beyond classification, such as
pathology detection, by leveraging the Embedding-Attention Fused Explanation
Map (EAFEM) for spatial localization.
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