

Localization-Guided Supervision for Robust Medical Image Classification by Vision Transformers

Sagi Ben Itzhak¹, Nahum Kiryati¹, Orith Portnoy², Arnaldo Mayer²

¹ School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel

² Diagnostic Imaging Department at Sheba Medical Center Affiliated with the School of Medicine, Tel Aviv University, Tel Aviv, Israel

Introduction

Problem

Medical Image Analysis

- Small datasets (annotation cost)
- > Technical variability (different scanners & protocols)

Suggested Approach

Robust image classification via explanation supervision.

LGM-ViT (Localization-Guided Medical Vision Transformer): End-to-end training of ViT-based classification models with explanation supervision.

Methods

Overview of LGM-ViT Training Framework

Results

Qualitative Results (BraTS2020 Training Set)

Magenta Contour – Ground-truth lesion annotations Heatmaps – Explainability maps derived from the model

ViT Baseline: Predictions based on irrelevant features

- Classification Pipeline: encourages correct predictions, improving accuracy.
- Explanation Supervision Pipeline encourages correct predictions "for the right reasons", enhancing generalization and robustness.

Attribution Map

EAFEM (Embedding-Attention Fused Explanation Map), used as Attribution Map in LGM-ViT, combines attention information with feature representation:

Attention-based Map

LGM-ViT: Predictions based on pertinent features

Both models accurately predicted all six examples as positive during training.

Quantitative Results

Binary classification evaluation on the ViT-B/16 [4] model:

Dataset	Method	F1 Score	Accuracy	AUROC	АР	Cohen's Kappa
BraTS2020 (lesion)	Baseline	89.5	91.2	96.7	96.5	81.9
	GradMask[6]	89.8	91.4	96.7	96.6	82.4
	RobustViT[3]	89.8	91.3	96.9	96.8	82.2
	RES-G[5]	90.3	91.8	96.9	96.8	83.1
	RES-L[5]	89.6	91.1	96.6	96.6	81.8
	LGM-ViT(Ours)	91.4	92.8	97.3	97.4	85.3
LiTS17 (liver)	Baseline	79.1	84.7	93.3	90.1	67.0
	GradMask[6]	81.6	87.1	93.7	90.8	71.7
	RobustViT[3]	80.2	86.6	93.3	89.8	70.0
	RES-G[5]	82.0	87.4	94	90.1	72.3
	RES-L[5]	80.3	85.5	92.6	88.1	68.8
	LGM-ViT(Ours)	88.8	92.2	97.2	96	82.8

Binary classification evaluation for LGM-ViT with different attribution methods on the LiTS17 test set:

Method	F1 Score	Accuracy	AUROC	АР	Cohen's Kappa
None (Baseline)	79.1	84.7	93.3	90.1	67
Rollout Attention[1]	86.2	90.3	96.1	94	78.7
GAE[2]	84.3	88.6	95.4	93.2	75.4
Attention-based Map	82.8	87.9	94.3	92.3	73.5
Embedding-based Map	87.5	91.3	96.3	95.2	80.8
EAFEM	88.8	92.2	97.2	96	82.8

Performance metrics for LGM-ViT as a function of the percentage of training scans used for localization supervision during training:

EAFEM

Conclusions

- Challenging medical imaging datasets: Localization supervision works!
- Localization supervision on a *small subset* of the data can be enough!
- Our approach is not limited to binary classification, and not confined to the medical domain.

Contact

Sagi Ben Itzhak Tel Aviv University Email: sagib2@mail.tau.ac.il

References

- 1. Abnar, S., Zuidema, W.: Quantifying attention flow in transformers. arXiv preprintarXiv:2005.00928 (2020)
- 2. Chefer, H., Gur, S., Wolf, L.: Generic attention-model explainability for interpret-ing bi-modal and encoder-decoder transformers. In: Proceedings of the IEEE/CVFInternational Conference on Computer Vision. pp. 397–406 (2021)
- 3. Chefer, H., Schwartz, I., Wolf, L.: Optimizing relevance maps of vision transform-ers improves robustness. Advances in Neural Information Processing Systems 35,33618–33632 (2022)
- Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image isworth 16x16 words: Transformers for image recognition at scale. arXiv preprintarXiv:2010.11929 (2020)
- 5. Gao, Y., Sun, T.S., Bai, G., Gu, S., Hong, S.R., Liang, Z.: Res: A robust frame-work for guiding visual explanation. In: Proceedings of the 28th ACM SIGKDDConference on Knowledge Discovery and Data Mining. pp. 432–442 (2022)
- 6. Simpson, B., Dutil, F., Bengio, Y., Cohen, J.P.: Gradmask: Reduce overfitting byregularizing saliency. arXiv preprint arXiv:1904.07478 (2019)