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Problem

Medical Image Analysis
» Small datasets (annotation cost)

» Technical variability (different scanners & protocols)
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Introduction

Suggested Approach

Robust image classification via explanation supervision.

LGM-ViT (Localization-Guided Medical Vision Transformer):
End-to-end training of ViT-based classification models with
explanation supervision.

Overview of LGM-ViT Training Framework

Explanation Supervision Pipeline
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Classification Pipeline (conventional)

»  Classification Pipeline: encourages correct predictions, improving
accuracy.

»  Explanation Supervision Pipeline encourages correct predictions “for the
right reasons”, enhancing generalization and robustness.

Attribution Map

EAFEM (Embedding-Attention Fused Explanation Map), used as Attribution Map in
LGM-ViT, combines attention information with feature representation:
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Vision Transformer

Attention Matrices
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Qualitative Results (BraTS2020 Training Set)

Magenta Contour — Ground-truth lesion annotations
Heatmaps — Explainability maps derived from the model

ViT Baseline: Predictions based on irrelevant features

LGM-VIiT: Predictions based on pertinent features

Both models accurately predicted all six examples as positive during training.

Quantitative Results

Binary classification evaluation on the ViT-B/16 [4] model:

Kappa

Baseline 89.5 91.2 96.7 96.5 81.9

GradMask[6] 89.8 91.4 96.7 96.6 82.4

BraTS2020 RobustViT[3] 89.8 91.3 96.9 96.8 82.2
(lesion) RES-G[5] 90.3 91.8 96.9 96.8 83.1
RES-L[5] 89.6 91.1 96.6 96.6 81.8
LGM-ViT(Ours) 91.4 92.8 97.3 97.4 85.3

Baseline 79.1 84.7 93.3 90.1 67.0

GradMask[6] 81.6 87.1 93.7 90.8 71.7

LiTS17 RobustViT[3] 80.2 86.6 93.3 89.8 70.0
(liver) RES-G[5] 82.0 87.4 94 90.1 72.3
RES-L[5] 80.3 85.5 92.6 88.1 68.8
LGM-ViT(Ours) 88.8 92.2 97.2 96 82.8

Binary classification evaluation for LGM-VIT with different attribution methods
on the LiTS17 test set:

Kappa

None (Baseline) 79.1 84.7 93.3 90.1
Rollout Attention[1] 86.2 90.3 96.1 94 78.7
GAE[2] 84.3 88.6 95.4 93.2 75.4
Attention-based Map 82.8 87.9 94.3 92.3 73.5
Embedding-based Map 87.5 91.3 96.3 95.2 80.8
EAFEM 88.8 92.2 97.2 96 82.8

Performance metrics for LGM-VIT as a function of the percentage of training scans
used for localization supervision during training:
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Conclusions

» Challenging medical imaging datasets:
Localization supervision works!

» Localization supervision on a small subset of the
data can be enough!

» Our approach is not limited to binary classification,
and not confined to the medical domain.

References

1. Abnar,S., Zuidema, W.: Quantifying attention flow in transformers. arXiv preprintarXiv:2005.00928 (2020)

2. Chefer, H., Gur, S., Wolf, L.: Generic attention-model explainability for interpret-ing bi-modal and encoder-decoder
transformers. In: Proceedings of the IEEE/CVFInternational Conference on Computer Vision. pp. 397-406 (2021)

3. Chefer, H., Schwartz, |., Wolf, L.: Optimizing relevance maps of vision transform-ers improves robustness. Advances in
Neural Information Processing Systems 35,33618—-33632 (2022)

4. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,T., Dehghani, M., Minderer, M., Heigold,
G., Gelly, S., et al.: An image isworth 16x16 words: Transformers for image recognition at scale. arXiv
preprintarXiv:2010.11929 (2020)

5. Gao, Y., Sun,T.S, Bai, G., Gu, S., Hong, S.R., Liang, Z.: Res: A robust frame-work for guiding visual explanation. In:
Proceedings of the 28th ACM SIGKDDConference on Knowledge Discovery and Data Mining. pp. 432-442 (2022)

6. Simpson, B., Dutil, F., Bengio, Y., Cohen, J.P.: Gradmask: Reduce overfitting byregularizing saliency. arXiv preprint
arXiv:1904.07478 (2019)

© POSTER TEMPLATE BY GENIGRAPHICS® 1.800.790.4001 WWW.GENIGRAP

HICS.COM



	Slide 1

