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Abstract

Instance-level image retrieval aims to find images contain-
ing the same object as a given query, despite variations
in size, position, or appearance. To address this challeng-
ing task, we propose Patchify, a simple yet effective patch-
wise retrieval framework that offers high performance, scal-
ability, and interpretability without requiring fine-tuning.
Patchify divides each database image into a small num-
ber of structured patches and performs retrieval by com-
paring these local features with a global query descriptor,
enabling accurate and spatially grounded matching. To
assess not just retrieval accuracy but also spatial correct-
ness, we introduce LocScore, a localization-aware metric
that quantifies whether the retrieved region aligns with the
target object. This makes LocScore a valuable diagnostic
tool for understanding and improving retrieval behavior.
We conduct extensive experiments across multiple bench-
marks, backbones, and region selection strategies, showing
that Patchify outperforms global methods and complements
state-of-the-art reranking pipelines. Furthermore, we apply
Product Quantization for efficient large-scale retrieval and
highlight the importance of using informative features dur-
ing compression, which significantly boosts performance.

1. Introduction

Instance retrieval aims to find images in a database con-
taining the same visual instance as a query image, regard-
less of variations in perspective, scale, lighting, or back-
ground [12, 33]. It is widely applicable in scenarios such
as personal photo search and product or landmark retrieval
[6, 19, 26, 29, 36, 39].

Robust feature representations are essential due to ap-
pearance changes of the same instance. Recent meth-
ods [14, 30] achieve high accuracy by fine-tuning large en-
coders on domain-specific datasets or reranking with hun-
dreds of dense local descriptors per image. However, these
require costly annotations or incur heavy memory and com-
putation overhead. Efficient solutions without fine-tuning
or dense local matching remain underexplored.
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Figure 1. Overview of our patch-wise retrieval framework.
Given a query image, global methods [14, 21, 38] often retrieve vi-
sually similar images without indicating what triggered the match.
Our approach retrieves correct instances with spatial interpretabil-
ity by identifying the most relevant regions.

In this work, we propose Patchify, a simple yet effec-
tive patch-wise retrieval pipeline that uses only a few local
features per image. By combining multi-scale grid patches
with pretrained visual encoders, Patchify enables efficient,
interpretable, and accurate retrieval. Experiments show that
patch-wise features consistently outperform global descrip-
tors, and our simple grid-based method matches the perfor-
mance of more complex SOTA approaches. We also inves-
tigate various design choices for patch-wise retrieval as a
set of practical “bag-of-tricks,” which are presented in the
supplementary material due to space constraints.
We summarize our main contributions as follows:
• A patch-wise retrieval framework operating without fine-

tuning or region proposals.
• LocScore, a localization-aware metric for evaluating re-

trieval accuracy and spatial alignment.
• Extensive experiments across backbones and region sam-

pling strategies, showing competitive performance with
greater simplicity.
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Figure 2. Overview of our Patchify retrieval pipeline. The L2 configuration extracts multi-scale grid patches (1→ 1, 2→ 2, and 3→ 3),
which are individually encoded for feature extraction and indexing. Retrieval computes patch-level similarities across the database, ranking
each image by its highest-scoring patch.

2. Method
Our goal is to design an instance-level image retrieval
framework that not only achieves high accuracy and effi-
ciency, but also offers strong interpretability to reveal why a
result is retrieved. We propose Patchify, a single-stage re-
trieval pipeline that explicitly enables spatial alignment and
interpretable retrieval outcomes. We further introduce Loc-
Score, a localization-aware metric that quantifies whether
retrieval decisions are based on the correct image regions,
providing a principled way to assess interpretability.

2.1. Patchify: Patch-wise Retrieval Pipeline
Patchify integrates local spatial cues into retrieval without
complex region proposals. Each database image is divided
into multi-scale, non-overlapping grid patches (e.g., 1 → 1,
2 → 2, 3 → 3), producing a compact set of local descriptors
using a frozen image encoder such as CLIP or DINOv2.
A query image is encoded as a single global descriptor for
scalability. For each database image, we identify the patch
with the highest similarity to the query and use its score for
ranking.

This design achieves strong performance while signif-
icantly reducing the number of descriptors compared to
dense local matching, leading to lower memory and com-
putation costs. The use of structured patches also makes the
retrieval process interpretable, as it reveals which specific
region triggered the match. Efficiency enhancements such
as descriptor compression are described in the supplemen-
tary material.

2.2. LocScore: Localization-aware Metric
To evaluate the effectiveness of local features in instance re-
trieval, we introduce a localization-aware metric, LocScore,
which quantifies not only whether the correct image is re-
trieved, but also how accurately the retrieved region aligns
with the target object. Given a query image, the system re-
turns a ranked list of retrieved images along with their most

similar local patch.
To reflect not just the presence of correct retrievals but

also their order in the ranked list, we weight each prediction
by its retrieval precision. This allows us to evaluate local-
ization performance in a retrieval-aware manner, rewarding
predictions that are both accurate and highly ranked.

Let Bn,i
gt and Bn,i

pred denote the ground-truth and predicted
bounding boxes, respectively, for the i-th ground-truth im-
age of the n-th query. Suppose this ground-truth image
is retrieved at rank rn,i, and let hn,i denote the number
of ground-truth positives retrieved within the top-rn,i po-
sitions.

We first define the localization score for a single query n
as:

LocScore(n) =
1

In

In∑

i=1

hn,i

rn,i
· IoU(Bn,i

gt , Bn,i
pred), (1)

where In is the number of ground-truth positives for query
n. If a ground-truth image is not retrieved for a given query,
its IoU is treated as zero.

The overall LocScore across all queries is then computed
by averaging the per-query scores:

LocScore =
1

N

N∑

n=1

LocScore(n), (2)

where N is the total number of queries.
We further introduce a thresholded variant of the metric

to provide a binary notion of successful localization:

LocScore(n)(ω) =
1

In

In∑

i=1

hn,i

rn,i
· I

[
IoU(Bn,i

gt , Bn,i
pred) ↑ ω

]
,

(3)

LocScore(ω) =
1

N

N∑

n=1

LocScore(n)(ω), (4)

where I[·] is the indicator function.
To reduce sensitivity to the choice of threshold ω, we av-
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Figure 3. Example of thresholded LocScore (ω). LocScore vari-
ation with different IoU thresholds ω. A retrieved result is marked
correct if the predicted patch overlaps the ground-truth box by at
least ω.

erage over a set of thresholds T :

mLocScore =
1

|T |
∑

ω↑T
LocScore(ω), (5)

where T = {0.3, 0.4, 0.5} in our experiments.
This formulation enables both fine-grained and thresh-

olded interpretations of localization performance. Our pro-
posed metrics evaluate two critical aspects: whether the cor-
rect image is retrieved, and whether the retrieval is based
on the correct local region. As illustrated in Figure 3, the
thresholded variant further allows evaluation at different
granularities by varying the IoU threshold. Even when the
correct image is retrieved, a low LocScore indicates that the
retrieval relied on spatially irrelevant content. This makes
LocScore a powerful and interpretable diagnostic tool, akin
to class activation maps (CAM) in explainable AI.

3. Experiment
We evaluate our Patchify method (Figure 2) on two stan-
dard instance retrieval benchmarks, INSTRE [34] and IL-
IAS [14], reporting both mean Average Precision (mAP)
and our localization-aware metric, LocScore, which reflects
retrieval accuracy and spatial alignment. In the main paper,
we present results using the continuous LocScore formula-
tion, and provide analyses with thresholded variants in the
supplementary material (Section S9).

3.1. Effectiveness of Patch-wise Representation
First, we compare Patchify-based local representations with
conventional global descriptors using two pretrained en-
coders, DINOv2 [21] and CLIP [11].

Global vs. Local: A Comparative Analysis As sum-
marized in Table 1, local features consistently outperform
global ones across different datasets, encoders, and metrics.
This highlights the importance of spatial granularity in im-
proving both retrieval performance and localization quality.

Table 1. mAP (%) and LocScore (%) of global and local features
on INSTRE and ILIAS using DINOv2 and CLIP encoders.

Encoder Type
INSTRE ILIAS

mAP LocScore mAP LocScore

DINOv2 global 57.70 15.07 40.56 12.18
local 72.54 22.22 57.52 18.49

CLIP global 73.84 18.10 31.60 9.18
local 87.57 30.37 53.35 17.95

We observe local features provide a substantial boost, par-
ticularly in challenging scenarios such as occluded or off-
center objects. We hypothesize local features complement
global ones by capturing fine-grained, spatially grounded
cues that may be lost in global representations.

Qualitative result As shown in Figure 4, we compare the
retrieved images of the Global and Local methods. We ob-
serve that Patchify can identify the small and non-centered
objects. These qualitative results coincide with Figure S1.
Therefore, local features play a crucial role in instance re-
trieval, particularly when dealing with diverse visual condi-
tions affecting the target objects.

3.2. Method Comparison
In this section, we investigate how different region selection
strategies affect instance retrieval performance, and com-
pare our Patchify method against recent state-of-the-art ap-
proaches, both as a standalone feature extractor and within
reranking pipelines.

3.2.1. Different region selection strategies
We investigate how different region selection strategies
influence instance retrieval, comparing our grid-based
Patchify approach with sliding windows and region pro-
posal methods using strong encoders such as SigLIP. De-
tailed descriptions of each approach are provided in Sec-
tion S5. As shown in Table 2, sliding window and proposal-
based methods generally achieve higher mAP and LocScore
than Patchify. We attribute these improvements to their finer
spatial coverage or stronger semantic alignment, which in-
creases the likelihood of capturing the target instance ac-
curately. However, these benefits come at the cost of ad-
ditional computation and memory, whereas Patchify main-
tains competitive performance with much greater efficiency.
Additional results and discussion are presented in the sup-
plementary material.

3.2.2. Comparison with SOTA Methods
We evaluate Patchify against state-of-the-art instance re-
trieval methods on the mini-ILIAS [14], an extension of
ILIAS with challenging distractors from YFCC100M [32].
The comparison covers two setups: single-stage global re-
trieval and two-stage reranking frameworks.

Single-Stage Retrieval. Table 3 reports results for global
feature baselines, the SigLIP linear adaptation from IL-
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Figure 4. Qualitative comparison between Global and Patchify on ILIAS. While global features often fail to retrieve small or non-
centered instances, Patchify successfully localizes and retrieves correct instances with better spatial grounding.

Table 2. Comparison of different localization strategies in terms
of mAP (%) and LocScore (%) on INSTRE and ILIAS.

Method INSTRE ILIAS
mAP LocScore mAP LocScore

Patchify 87.01 24.29 65.16 19.75

Sliding Window (0.5) 89.26 27.50 68.24 22.36
Sliding Window (0.25) 90.62 29.87 70.02 24.57

Region Proposal 92.96 71.44 84.19 68.23

IAS, and our Patchify variants. Patchify consistently sur-
passes all baselines, achieving competitive zero-shot per-
formance without fine-tuning. Stronger backbones such as
DINOv3 [28] further boost its effectiveness, indicating that
the patch-based design benefits directly from improved en-
coders.

Integration into Reranking Frameworks. To assess
compatibility with reranking systems, we integrate Patchify
into AMES [30], a state-of-the-art local alignment method.
Patchify enhances AMES performance and even ap-
proaches or exceeds prior SOTA results, showing that it
serves effectively as both a standalone retriever and a first-
stage feature representation within reranking pipelines.

4. Conclusion
We introduced Patchify, a lightweight patch-wise retrieval
framework that achieves high accuracy, scalability, and
strong interpretability without fine-tuning. By identifying
the most relevant regions for each retrieval, Patchify makes
the decision process transparent and provides deeper in-
sight into retrieval behavior. Coupled with LocScore, our
localization-aware metric, it offers quantitative and spatial
evaluations that reveal when and why a retrieval succeeds or
fails, and achieves competitiveness against more complex

Method mAP@1k DB mem. [GB]
Global feature
DINOv2† 18.80 9.55
OpenCLIP† 22.90 9.55
SigLIP2† 37.30 9.55
Reranking (AMES)
DINOv2† 26.50 1536
OpenCLIP† 32.90 1536

Global feature
DINOv3 21.80 19.09

+ Patchify (L3) 42.98 267.29
SigLIP 20.41 19.09

+ Patchify (L2) 50.27 267.29
SigLIP† 33.86 9.55

+ Patchify (L3) 40.48 286.38
Reranking (AMES)
DINOv3 29.86 1536

+ Patchify (L3) 50.72 1536
SigLIP 26.99 1536

+ Patchify (L2) 56.54 1536
SigLIP† 40.91 1536

+ Patchify (L3) 48.21 1536

Table 3. Performance on mini-ILIAS in terms of mAP@1k and
DB memory. A dagger (†) denotes the linear adaptation baseline
from the ILIAS [14], where the SigLIP encoder is fine-tuned on
UnED [35] with a linear probing strategy. Patchify markedly im-
proves over the global baselines, reaching or even surpassing the
reranking performance of AMES.

approaches across multiple benchmarks. While the main
paper presents core findings, the supplementary material re-
ports extensive experiments on encoder choices, patch con-
figurations, region selection strategies, and practical scala-
bility techniques such as PQ training recipes, offering ac-
tionable guidance for deploying interpretable and scalable
retrieval in large-scale scenarios.
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Figure S10. Qualitative results of Global and Patchify on ILIAS
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