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Patch-wise Retrieval: An Interpretable Instance-Level Image Matching

Supplementary Material

S1. Overview406

This supplementary material provides extensive experimen-407

tal results, implementation details, and qualitative analyses408

that could not be included in the main paper due to space409

constraints. Following the structure of the supplementary410

text, we elaborate on the following aspects:411

• Section S2 describes the trends in related research, ex-412

plains how our work is positioned among them, and high-413

lights the differences from prior approaches.414

• Section S3 presents an analysis of the effectiveness of415

global and local features in instance retrieval with re-416

spect to three factors: instance size, location, and bright-417

ness. The results provide insights into why local features418

are more robust than global features under various condi-419

tions.420

• Section S4 analyzes the impact of model architecture and421

pretraining data scale on retrieval performance.422

• Section S5 provides a comprehensive view of how differ-423

ent region-level sampling strategies affect retrieval out-424

comes, and examines whether the simple Patchify method425

remains competitive compared to strategies with stronger426

spatial alignment.427

• Section S6 explains the implementation details of the ex-428

periments from Section 3.2.2 that were not described in429

the main paper.430

• Section S7 investigates how to achieve scalability while431

using patch-wise features, analyzing database size, per-432

formance, and the role of informative features. We show433

that the choice of training features for PQ has a signifi-434

cant impact on performance; in particular, features well-435

aligned with target objects lead to better compression and436

retrieval accuracy, underscoring the importance of infor-437

mative patch selection during index construction.438

• Section S8 provides an extended version of the conclu-439

sion, containing discussions that could not be included in440

the main paper due to space limitations.441

• Section S9 covers the thresholded version of LocScore442

and the mean LocScore that were not included in the main443

paper, and analyzes the corresponding results.444

• Section S10 presents qualitative results across a wide va-445

riety of instances.446

Together, these sections offer a deeper and more compre-447

hensive view of our framework, clarifying design choices,448

providing diagnostic analyses, and demonstrating both449

the scalability and interpretability benefits of Patchify in450

instance-level image retrieval.451

S2. Related work 452

Instance-Level Image Retrieval Methods Early studies 453

in instance-level image retrieval relied on hand-crafted de- 454

scriptors such as SIFT [19] and SURF [1], which extract 455

local keypoints and compute image similarity via Bag-of- 456

Words models. With the advent of deep learning, the field 457

shifted toward learning feature representations using deep 458

convolutional backbones like VGG, Inception, and ResNet. 459

Global image descriptors extracted from these networks, 460

particularly with pooling schemes such as GeM [24], be- 461

came the dominant approach. 462

Recent advances in large-scale data-driven learning have 463

further led to the development of highly transferable vi- 464

sual representations. Models trained on vast and diverse 465

datasets, such as CLIP [12, 25] and DINO [2], are capa- 466

ble of extracting general-purpose image features that per- 467

form well across a wide range of downstream tasks, in- 468

cluding classification [10, 40], segmentation [16, 26], and 469

image retrieval [21, 23]. These self-supervised and vision- 470

language models provide strong global representations that 471

enable scalable and efficient retrieval systems. However, 472

these global descriptors often struggle with fine-grained in- 473

stance matching, especially when the target object is small, 474

occluded, or appears off-center. This limitation arises from 475

their lack of spatial precision, which becomes critical in 476

instance-level retrieval scenarios where spatial alignment 477

between query and retrieved content is essential. 478

To overcome the spatial limitations of global descriptors, 479

recent instance retrieval pipelines have adopted a two-stage 480

reranking strategy [15, 30]. In these methods, an initial 481

ranking is produced using global descriptors, followed by 482

a reranking stage that compares sets of local features be- 483

tween top-ranked images. Local features are typically ex- 484

tracted as hundreds of dense patches or region proposals 485

per image, and fine-grained similarity is computed across 486

all pairs. While this improves localization and robustness, it 487

introduces significant computational overhead. Each query 488

requires comparing thousands of patch-level embeddings, 489

and storing such dense local features across a database is 490

memory-intensive. 491

Our method, Patchify, addresses the above limitations 492

through a simple yet effective patch-based retrieval frame- 493

work. We divide each image into a small number of non- 494

overlapping grid patches and embed them independently us- 495

ing frozen visual encoders. Compared to reranking-based 496

approaches, Patchify requires only a handful of patch fea- 497

tures per image, drastically reducing both computation and 498

memory. To further improve scalability, we apply Product 499
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Quantization (PQ) [14] to compress patch embeddings to a500

level comparable with global descriptors. Despite its sim-501

plicity, Patchify achieves performance on par with state-of-502

the-art global and reranking methods, and can further bene-503

fit from reranking extensions. This demonstrates that care-504

ful patch-level design choices can lead to highly efficient505

and interpretable retrieval without compromising accuracy.506

Explainability via Localization Cues As deep learning507

systems grow in capability and complexity, interpretabil-508

ity has emerged as a critical component for building trust-509

worthy and transparent AI. The field of explainable AI510

(XAI) has gained increasing attention, particularly in com-511

puter vision, where spatial interpretability enables users512

to understand where a model focuses during prediction.513

Foundational approaches such as Class Activation Maps514

(CAM) [39] and Weakly Supervised Object Localization515

(WSOL) [3, 4] have laid the groundwork, and recent efforts516

have expanded toward analyzing the internal structures of517

large-scale models [6, 8, 9].518

In contrast to prior work, our method provides inter-519

pretability by design in the context of instance-level re-520

trieval. Our method, Patchify, allows us to trace which521

part of the image contributes most to the retrieval, unlike522

traditional global descriptors that lack spatial grounding.523

To quantify this interpretability, we propose LocScore, a524

localization-aware metric that jointly considers retrieval ac-525

curacy and spatial alignment with the ground truth. This526

provides a unified measure of retrieval quality and inter-527

pretability, allowing for diagnostic analysis of model be-528

havior.529

S3. Impact of Image characteristics530

S3.1. Analysis531

We investigate the effectiveness of global and local fea-532

tures with respect to three factors: instance size, location,533

and brightness. The first two factors are directly related to534

our proposed metrics, LocScore; the last factor is a com-535

mon challenge in instance retrieval. Figure S1 shows the536

comparison between local and global features. Overall, we537

observe that local features generally improve performance,538

demonstrating robustness under varying image conditions.539

As shown in Figure S1a, global features outperform lo-540

cal features when the instance occupies a large portion of541

the image (rightmost group). However, as the instance542

size decreases, local features begin to outperform global543

ones, demonstrating their advantage in small object re-544

trieval. Next, we assess the effect of object location by545

measuring Euclidean distance between the center of the im-546

age and the center of the ground-truth bounding box. As547

shown in Figure S1b, local features maintain more stable re-548

trieval accuracy as the instance moves away from the center,549

demonstrating greater robustness to spatial displacement.550

Lastly, we analyze the impact of image brightness, quan- 551

tified as the average L-channel value in the Lab color space. 552

In Figure S1c, both global and local features achieve higher 553

performance on images with medium brightness, while per- 554

formance drops on very dark or very bright images. Nev- 555

ertheless, local features consistently outperform global fea- 556

tures across all brightness levels, even though the overall 557

trend is similar. 558

S3.2. Implementation details 559

We adopt CLIP and DINOv2 as the visual encoder for the 560

evaluation. We compare global and local (L3) features with 561

mAP and LocScore on ILIAS. 562

Object bounding box ratio We sort database images 563

with object size by computing the object bounding box area. 564

Then we divide the total object size values equally into 5 565

bins. For the evaluation, queries with no true positive im- 566

ages in a specific bin are excluded. Global feature works 567

well in big objects but not in small ones. 568

Object distance from image center We compute L2 dis- 569

tance between the bounding box and the image center and 570

sort them. Then we divide all values equally into 5 bins. 571

Similarly, queries with no true positive images in a specific 572

bin are excluded. Global features work well when the object 573

is centered and not so well when it is not centered. 574

Brightness of image Unlike the previous two experi- 575

ments, the evaluation benchmark datasets did not exhibit 576

a meaningful distribution with respect to brightness. To ad- 577

dress this, we applied tone mapping by scaling the L chan- 578

nel in the Lab color space to 0.2!, 0.6!, 1.0!, 1.4!, and 579

1.8! of its original value, creating five brightness-adjusted 580

versions of each dataset. We then measured performance on 581

each transformed set. 582

S4. Investigation of visual backbone 583

To better understand the impact of model architecture and 584

pretraining data scale on retrieval performance, we con- 585

duct a comparative analysis across various visual encoders. 586

Our results indicate that Transformer-based models such as 587

DINOv2, CLIP, and SigLIP consistently outperform CNN- 588

based counterparts like ResNet and Inception, demonstrat- 589

ing the effectiveness of modern architectural designs in both 590

retrieval accuracy and localization quality. Notably, Con- 591

vNeXt pretrained on LAION-2B, despite being a CNN, 592

achieves performance on par with Transformer-based mod- 593

els. This observation underscores the importance of large- 594

scale pretraining, which significantly enhances the general- 595

ization ability of learned features across architectures. 596

2



ICCV
#4

ICCV
#4

ICCV 2025 Submission #4. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

(a) Object bounding box ratio

(b) Object distance from image center

(c) Brightness of image

Figure S1. mAP(%) and LocScore(%) of global and local features in terms of object size, distance from image center, and brightness
of image. We measure the performance on ILIAS. Both global and local features show a similar trend. In most cases, local features
consistently outperform global features across all settings.

Recently, many visual encoders have been proposed,597

and we have to choose which visual encoder we use. In598

this section, we further explore which visual encoders of-599

fer the most effective representations for instance retrieval.600

We analyze a diverse set of models, including both CNN-601

based (e.g., VGG [28], ResNet [11], Inception [31], Con-602

vNext [18]) and Transformer-based (e.g., DINOv2, CLIP,603

SigLIP [37]) encoders. This analysis aims to provide604

deeper insights into the architectural factors that contribute605

to strong instance-level retrieval performance. Note that we606

extract local features using Patchify.607

Characteristic of visual encoders We compare instance608

retrieval performance across encoder models with CNN-609

based and Transformer-based backbones. As shown in Fig-610

ure S2, based on our analysis using the ILIAS dataset, as611

we use more local features, the performance generally in-612

creases. ConvNeXt trained on ImageNet is an exceptional613

case where the performance decreases. Although Con-614

vNeXt pretrained on LAION-2B shows high performance615

in CNN-based models, transformer-based models generally616

achieve higher performance compared to CNN-based mod- 617

els. 618

Impact of pretraining data size of encoder In terms of 619

the exception case of ConvNeXt pretrained on LAION-2B, 620

we hypothesize that the size of the dataset used during pre- 621

training plays a significant role. As shown in Table 4 and 622

Figure S3, model performance consistently improves with 623

the scale of training data. Regardless of feature dimension- 624

ality, increasing the amount of training data improves gen- 625

eralization performance, which in turn enhances instance 626

retrieval performance. This result indicates that representa- 627

tion generalization is influenced by both model capacity and 628

data scale, consistent with findings in prior work [36, 41], 629

and further confirms that this relationship holds for instance 630

retrieval task as well that such an effect also extends to in- 631

stance retrieval tasks. 632

S5. Different region selection strategies 633

A simple and structured grid-based extraction strategy, as 634

used in our Patchify method, proved highly effective, es- 635

3



ICCV
#4

ICCV
#4

ICCV 2025 Submission #4. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

(a) mAP

(b) LocScore

Figure S2. Performance comparison between CNN-based backbone and Transformer-based models based on (a) mAP (%) and (b) LocScore
(%) metrics on ILIAS. For comparison, we apply the same scale to plots of CNN-based and Transformer-based models. We observe that
transformer-based models show higher performance compared to CNN-based models, except for ConvNext laion2b.

Table 4. Impact of pretraining data size on instance retrieval per-
formance of encoders.

Dataset
(Size)

Encoder
(Feat. Dim.) Type

mAP
INSTRE ILIAS

ImageNet-1K
(1M)

VGG16
(4096)

global 26.90 5.86
local 53.56 8.76

ResNet101
(2048)

global 36.29 10.40
local 61.38 16.19

Inception
(1536)

global 27.94 14.62
local 45.82 23.63

ConvNext
(1024)

global 38.97 8.61
local 56.25 1.90

LVD-142M
(142M)

DINOv2
(1024)

global 57.70 40.56
local 72.54 57.51

LAION-400M
(400M)

CLIP
(768)

global 73.83 31.60
local 87.57 53.35

LAION-2B
(2B)

ConvNext
(768)

global 77.95 41.25
local 92.87 64.44

WebLI
(10B)

SigLIP
(1024)

global 78.48 55.03
local 87.01 65.16

pecially when combined with strong vision transformer en- 636

coders such as SigLIP. This raises an important question: 637

how does such a simple approach compare to more elabo- 638

rate region selection methods? 639

To answer this, we design a series of experiments com- 640

paring Patchify with alternative region sampling strate- 641

gies, restricting our analysis to the SigLIP encoder, which 642

showed strong performance in earlier evaluations. All meth- 643

ods are evaluated on both the INSTRE and ILIAS datasets, 644

and a visual illustration is provided in Figure S4. We con- 645

sider the following strategies: 646

Global The standard approach where the entire image is 647

passed through the encoder to produce a single feature vec- 648

tor. 649

Patchify Our proposed method. The image is divided 650

into non-overlapping grid patches according to a predefined 651

multi-scale configuration (e.g., L0, L1, L2, L3). L0 corre- 652

sponds to a single 1 → 1 patch (the global setting), L1 in- 653

cludes both 1→ 1 and 2→ 2 patches, L2 adds 3→ 3 patches, 654

and L3 further includes 4 → 4 patches. Each patch is in- 655

dependently passed through the encoder to extract local de- 656

scriptors. This cumulative multi-scale design enables spa- 657

tial interpretability, as the most similar patch can be traced 658
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(a) mAP

(b) LocScore

Figure S3. Performance comparison on ILIAS under varying pre-
training data sizes. We observe that performance is low if the
amount of pre-training data is not sufficient.

to a specific image region.659

Sliding windows A denser sampling variant of Patchify660

with overlapping patches, using strides of 0.5 and 0.25 rela-661

tive to patch size instead of a stride of 1. This increases spa-662

tial coverage and the likelihood of capturing well-localized663

patches, allowing us to test whether finer sampling im-664

proves retrieval accuracy and spatial alignment.665

Region proposals A semantically guided method using666

Grounding DINO [17] to generate up to 20 high-quality667

object-level bounding boxes per image. These regions are668

cropped and encoded, offering an upper bound on per-669

formance when informative and well-localized patches are670

available.671

Our comparison in Table 2 shows that sliding window meth-672

ods outperform Patchify in both mAP and LocScore, with673

the 0.25 stride variant achieving the best results. This sug-674

gests that reducing the stride improves the likelihood of cap-675

turing accurate patches. Region proposal methods, while676

potentially stronger in spatial alignment, require additional677

computational cost and detection models. Across strategies,678

higher mAP generally coincides with higher LocScore, in-679

dicating that models retrieving correct images also tend to680

localize target objects more precisely. This positive corre- 681

lation holds for both CNN and Transformer architectures, 682

where increasing patch granularity consistently enhances 683

performance. 684

S6. Comparison with SOTA Methods 685

In this section, we describe the implementation details for 686

the experiments conducted in Section 3.2.2. All methods 687

are evaluated using SigLIP as the visual encoder, and re- 688

trieval performance is measured on both INSTRE [33] and 689

ILIAS [15] benchmarks. 690

AMES For AMES [30], we adopt its asymmetric 691

transformer-based reranking method. During inference, the 692

top-m images retrieved using global similarity are reranked 693

based on local similarities computed via transformer inter- 694

action between the query and database local descriptors. We 695

use the binary distilled variant of AMES with a universal 696

model trained across varying local descriptor counts. The 697

ensemble similarity between global and local features is 698

computed as a weighted combination, tuned via grid search. 699

ILIAS Baseline We also benchmark against the rerank- 700

ing strategy proposed in the ILIAS benchmark [15]. This 701

method involves reranking a shortlist of images retrieved 702

via global descriptors using dense feature correlation with 703

ground-truth instance boxes. As this approach depends on 704

densely sampled or region proposal-based local features, it 705

tends to have higher memory and computation overhead. 706

Hyperparameter Search Since reranking approaches 707

combine global and local similarities, hyperparameter tun- 708

ing is critical. We perform a grid search over the following 709

parameters to identify the best configuration: 710

• Number of reranked candidates: [0, 100, 200, 711

400, 800, 1000] 712

• Global-local balance weight ω: [0.0, 0.1, 0.2, 713

0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 714

1.0] 715

• Temperature scaling ε: [0.0, 0.05, 0.1, 0.2, 716

0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 717

1.0] 718

We report the performance using the best configuration se- 719

lected from this grid for each method. 720

S7. Applying Compression to Local Features 721

A well-known limitation of local feature-based retrieval 722

methods is their high memory usage, as they require stor- 723

ing a large number of descriptors per image. Unlike con- 724

ventional approaches, Patchify uses only a small number of 725

structured patch features per image, significantly reducing 726

the memory and computational burden. To further enhance 727
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(a)�Global (d)�Region�Proposal�(b)�Patchify (c)�Sliding�

Figure S4. Methods used in analysis. In Global, we use only one embedding. In Patchify, the local features are extracted from the patches
of an image. Sliding is similar to Patchify, but the patches have overlap. In Region Proposal, the detector is used to find the informative
object in an image and extract the local features by cropping the object.

Table 5. Comparison of mAP (%) performance under different
multi-scale levels and PQ usage.

Level Patchify PQ
INSTRE ILIAS

mAP LocScore mAP LocScore

L0 ✁ ✁ 78.48 18.92 55.03 14.31
✁ ✂ 81.99 19.48 54.97 14.30

L1 ✂ ✁ 83.06 21.72 59.45 16.63
✂ ✂ 86.20 22.92 57.37 15.65

L2 ✂ ✁ 85.97 23.89 63.32 18.84
✂ ✂ 88.20 25.00 59.28 17.00

L3 ✂ ✁ 87.01 24.29 65.16 19.75
✂ ✂ 88.52 25.08 59.96 17.33

scalability for large-scale retrieval, we apply Inverted File728

with Product Quantization (IVFPQ) [14].729

Database Size Table 7 shows the compression ratio when730

applying IVFPQ to the database. As we increase the level731

of patches, the memory consumption grows rapidly be-732

cause the required memory is proportional to the square733

of the patch level. However, when applying IVFPQ to the734

database, the increased amount of memory is alleviated. For735

example, in the INSTRE dataset, the difference in memory736

between L0 and L3 before IVFPQ is about 29.3 times, but737

after IVFPQ, the difference is 3.6 times.738

Performance comparison Table 5 presents the retrieval739

performance before and after applying PQ. As expected,740

compressing feature representations with PQ can lead to741

a slight performance drop due to quantization. This trend742

is observed on the ILIAS benchmark, where the data scale743

and difficulty are substantially higher. Interestingly, on the744

smaller and less challenging INSTRE benchmark, PQ even745

Table 6. Comparison of mAP (%) performance using different
training features for PQ.

Training Feature L0 (1) L1 (5) L2 (14) L3 (30) G.T. (1)

mAP (%) 60.19 55.80 55.53 53.13 65.07

yields performance improvements, potentially due to noise 746

reduction or enhanced centroid generalization. Despite 747

compression, local features with PQ still outperform global 748

features in both benchmarks. Together with the memory 749

statistics in Table 7, these results indicate that local char- 750

acteristics and PQ offer complementary benefits: delivering 751

strong retrieval accuracy with substantially reduced storage. 752

Training with Informative Features Product Quantiza- 753

tion (PQ) requires a training phase to learn cluster cen- 754

troids, and the choice of training features can significantly 755

impact retrieval performance. To explore this, we com- 756

pare PQ trained with features at different patch levels (L0, 757

L1, L2, L3) and with ground-truth-aligned features cropped 758

from instance bounding boxes. As summarized in Table 6, 759

the highest performance is achieved when PQ is trained on 760

ground-truth features, emphasizing the value of using se- 761

mantically informative representations. Interestingly, fea- 762

tures from intermediate patch levels (L1 and L2) perform 763

worse than L0, likely due to the inclusion of background 764

noise or irrelevant content. These results suggest that tighter 765

spatial alignment during PQ training plays a crucial role, 766

and highlight the importance of effective region selection 767

strategies. This highlights a previously underexplored yet 768

critical aspect of PQ training and may inform more robust 769

design choices in future PQ-based retrieval pipelines. 770

To enable scalable retrieval with local features, we adopt 771

Inverted File with Product Quantization (IVFPQ), a widely 772

used technique that combines coarse clustering with quan- 773

tization to allow efficient approximate nearest neighbor 774
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search with significantly reduced memory and latency over-775

head. To configure IVFPQ, we perform a grid search over776

the number of subvectors m ↑ {16, 32, 64} and the num-777

ber of clusters nlist ↑ {2048, 4096}, and select m = 64,778

nlist = 4096, and nbits = 8 based on retrieval perfor-779

mance.780

Table 7 summarizes the impact of increasing patch gran-781

ularity on database size before and after applying IVFPQ.782

As the number of patches increases from L0 to L3, un-783

compressed storage grows rapidly, by more than 29! on784

INSTRE and 30! on ILIAS. However, with IVFPQ, this785

increase is drastically reduced to just 3.6! and 1.6!, respec-786

tively. These results confirm that IVFPQ effectively scales787

to high-resolution patch representations, enabling practical788

deployment of patch-based retrieval with minimal memory789

overhead.790

We investigate how the choice of training features affects791

PQ effectiveness. As summarized in Table 6, the highest792

performance is achieved when PQ is trained with features793

extracted from ground-truth bounding boxes (G.T.), which794

provide strong semantic alignment with the target instances.795

In contrast, using patches from intermediate configurations796

(e.g., L1 and L2) results in lower performance, possibly due797

to noisy or irrelevant background content in those features.798

Interestingly, PQ trained with global features (L0) outper-799

forms L1 and L2, suggesting that lower-resolution but se-800

mantically focused representations may be more beneficial801

than ambiguous fine-grained features.802

Qualitative examples in Figure S6 support this observa-803

tion: G.T.-trained PQ accurately retrieves the correct in-804

stance under challenging conditions such as occlusion, scale805

change, and viewpoint variation, while PQ trained on L2806

fails to distinguish between visually similar but incorrect807

instances. These findings highlight the importance of using808

informative training features for PQ optimization and offer809

valuable guidance for future work on compressed local fea-810

ture retrieval.811

Table 7. Impact of multi-scale feature levels on storage size (MB)
before and after applying product quantization. CR denotes the
compression ratio. We observe that compression is scalable to
high-memory database.

Level
(No. Patches)

INSTRE ILIAS
Non-quant. Quant (CR) Non-quant. Quant (CR)

L0 (1) 103.68 19.77 (5.24) 19.08 18.21 (1.05)
L1 (5) 518.42 27.41 (18.91) 95.41 19.62 (4.86)
L2 (14) 1420 44.61 (31.83) 267.15 22.78 (11.73)
L3 (30) 3040 71.71 (42.39) 572.46 28.41 (20.15)

S8. Extended version of Conclusion812

In this work, we introduced Patchify, a simple yet effective813

patch-wise retrieval framework that achieves strong perfor-814

L1

L2

L0

G.T.

Figure S5. Images used to train PQ indices in each Patchify level
and G.T. We can observe that features from G.T. are related to the
instance, directly.

L0

L1

L2

G.T.

Query Retrieved�Images

Figure S6. Qualitative retrieval results using different PQ training
features at L3. PQ trained on G.T. finds the correct instance com-
pared to others. Thus, we also consider the informative features
when training PQ.

mance while maintaining both scalability and interpretabil- 815

ity. By decomposing each database image into a small set of 816

structured, multi-scale patches, Patchify enables spatially- 817

aware matching without requiring fine-tuning or region pro- 818

posals. Our experiments demonstrate that Patchify con- 819

sistently outperforms global feature baselines, adapts well 820

across a variety of backbones, and integrates seamlessly 821

into existing reranking pipelines. To evaluate the spatial 822

quality of retrievals, we proposed LocScore, a localization- 823

aware metric that captures not only retrieval accuracy but 824

also the alignment between retrieved regions and target ob- 825

jects. This metric provides valuable diagnostic insight into 826

how retrieval decisions are made and helps bridge perfor- 827
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AP:�1
LocScore:�0.51

AP:�1
LocScore:�0.14

IoU:�0.13

IoU:�0.32 IoU:�0.88

IoU:�0.09

IoU:�0.44

IoU:�0.23 IoU:�0.09

IoU:�0.41

Query Top�4Top�2 Top 3Top 1

Predicted�Patch G.T.�bbox

Figure S7. Comparison of AP and LocScore for evaluating re-
trieval quality. Both query examples achieve perfect AP (i.e., all
ground-truth images are retrieved), yet their LocScores differ sig-
nificantly due to localization accuracy. This highlights how Loc-
Score complements AP by incorporating spatial alignment quality.

mance evaluation with model interpretability. Furthermore,828

we showed that Patchify is highly scalable through the use829

of Product Quantization (PQ). Our analysis revealed that the830

choice of training features for PQ has a significant impact831

on performance. In particular, features that are well-aligned832

with target objects lead to better compression and retrieval833

accuracy, highlighting the importance of informative patch834

selection during index construction. Overall, Patchify of-835

fers a practical and interpretable design for instance-level836

image retrieval, enabling efficient matching with minimal837

computation and memory overhead. Our findings point to-838

ward promising future directions for retrieval systems that839

combine spatial precision, scalability, and transparency.840

S9. LocScore841

In this section, we present additional analyses of the Loc-842

Score metric that could not be included in the main paper843

due to space constraints. Specifically, we report results on844

the thresholded variants of LocScore as illustrated in Fig-845

ure S8 and S9, the corresponding averaged metric across846

thresholds, as shown in Table 8 and 9. These results provide847

a more detailed understanding of how localization quality848

varies under different criteria and offer further insight into849

the spatial precision of retrieval systems.850

As illustrated in Figure 3, the thresholded variant of Loc-851

Score differs from the original continuous formulation by852

enforcing a binary success criterion based on a fixed IoU853

threshold ϑ. While the original LocScore weights retrievals854

proportionally to their IoU values, the thresholded version855

considers a retrieved patch correct only if its IoU with the856

ground-truth box exceeds ϑ. For example, in Figure 3, Top-857

3 is counted as correct for ϑ = 0.3 but not for ϑ = 0.5, lead-858

ing to a decrease in LocScore as the threshold increases.859

This binary formulation provides a more stringent evalu-860

ation of spatial alignment, complementing the continuous 861

score by emphasizing higher-precision localization. 862

Thresholded vs. Continuous LocScore Our proposed 863

LocScore metric comes in two variants: the thresh- 864

olded LocScore(ϑ) and the continuous version, mLocScore. 865

These two forms offer different perspectives on evaluating 866

spatial alignment in retrieval results. 867

Thresholded LocScore(ϑ) evaluates whether the pre- 868

dicted patch sufficiently overlaps with the ground-truth 869

bounding box based on a predefined IoU threshold ϑ. Only 870

retrieved results with IoU ↓ ϑ are counted as correct, mak- 871

ing the score binary and stricter. For example, as the thresh- 872

old increases from 0.3 to 0.5, fewer retrievals are considered 873

valid, leading to a lower overall LocScore. This allows for 874

clear pass/fail decisions but may ignore partial matches that 875

are still spatially relevant. 876

In contrast, mLocScore provides a continuous assess- 877

ment by averaging the IoU values of the retrieved patches. 878

This formulation captures fine-grained differences in spa- 879

tial alignment and offers a more nuanced view of localiza- 880

tion quality. Unlike the binary variant, mLocScore reflects 881

varying degrees of correctness rather than a hard cutoff. 882

The difference in behavior is evident in the experimental 883

results. Increasing ϑ in LocScore(ϑ) leads to a sharp drop 884

in scores, particularly at ϑ = 0.5, while mLocScore ex- 885

hibits smoother variations and preserves relative differences 886

between models and feature levels. Therefore, thresholded 887

LocScore is more appropriate when a strict spatial correct- 888

ness criterion is needed, while mLocScore is preferable for 889

capturing overall localization trends. 890
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(a) VGG16 (b) ResNet

(c) Inception (d) ConvNext-IN1k

(e) ConvNext-LAION2b (f) CLIP

(g) DINOv2 (h) SigLIP

Figure S8. LocScore(ω) visualizations across threshold ω = 0.3, 0.4, 0.5 of CNN-based and Transformer-based models on ILIAS.
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(a) VGG16 (b) ResNet

(c) Inception (d) ConvNext-IN1k

(e) ConvNext-LAION2b (f) CLIP

(g) DINOv2 (h) SigLIP

Figure S9. LocScore(ω) visualizations across threshold ω = 0.3, 0.4, 0.5 of CNN-based and Transformer-based models on INSTRE.
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INSTRE ILIAS
model Level mAP LocScore mLocScore LocScore(ω) mAP LocScore mLocScore LocScore(ω)

VGG16 L0 26.690 8.842 6.960
ω=0.3 : 10.928

5.864 2.625 2.866
ω=0.3 : 3.540

ω=0.4 : 6.526 ω=0.4 : 2.814
ω=0.5 : 3.426 ω=0.5 : 2.245

L1 39.859 13.697 9.453
ω=0.3 : 16.400

7.399 2.718 2.468
ω=0.3 : 3.359

ω=0.4 : 8.295 ω=0.4 : 2.396
ω=0.5 : 3.665 ω=0.5 : 1.649

L2 51.186 19.189 14.331
ω=0.3 : 24.852

8.485 2.978 2.728
ω=0.3 : 3.852

ω=0.4 : 12.865 ω=0.4 : 2.614
ω=0.5 : 5.277 ω=0.5 : 1.719

L3 53.562 19.813 14.561
ω=0.3 : 25.461

8.764 3.030 2.716
ω=0.3 : 3.941

ω=0.4 : 12.999 ω=0.4 : 2.595
ω=0.5 : 5.223 ω=0.5 : 1.613

ResNet101 L0 36.288 10.763 7.147
ω=0.3 : 11.643

10.396 4.111 4.064
ω=0.3 : 5.296

ω=0.4 : 6.505 ω=0.4 : 3.908
ω=0.5 : 3.293 ω=0.5 : 2.989

L1 48.757 15.892 9.725
ω=0.3 : 17.410

13.300 4.941 4.367
ω=0.3 : 6.110

ω=0.4 : 8.259 ω=0.4 : 4.158
ω=0.5 : 3.504 ω=0.5 : 2.832

L2 58.588 21.058 14.150
ω=0.3 : 25.269

15.410 5.573 4.969
ω=0.3 : 7.309

ω=0.4 : 12.284 ω=0.4 : 4.640
ω=0.5 : 4.896 ω=0.5 : 2.959

L3 61.382 21.558 13.893
ω=0.3 : 25.138

16.193 5.625 4.853
ω=0.3 : 7.276

ω=0.4 : 11.894 ω=0.4 : 4.467
ω=0.5 : 4.646 ω=0.5 : 2.815

Inception L0 27.943 8.435 5.585
ω=0.3 : 9.066

14.624 5.260 4.859
ω=0.3 : 6.410

ω=0.4 : 5.105 ω=0.4 : 4.812
ω=0.5 : 2.584 ω=0.5 : 3.355

L1 34.592 10.866 6.325
ω=0.3 : 11.091

18.026 6.418 5.545
ω=0.3 : 7.807

ω=0.4 : 5.464 ω=0.4 : 5.275
ω=0.5 : 2.422 ω=0.5 : 3.552

L2 42.077 13.755 7.676
ω=0.3 : 13.787

21.385 7.484 6.557
ω=0.3 : 9.831

ω=0.4 : 6.513 ω=0.4 : 6.187
ω=0.5 : 2.728 ω=0.5 : 3.652

L3 45.822 14.112 6.952
ω=0.3 : 12.808

23.631 7.757 6.310
ω=0.3 : 9.769

ω=0.4 : 5.698 ω=0.4 : 5.810
ω=0.5 : 2.350 ω=0.5 : 3.350

ConvNext IN1k L0 38.972 11.006 6.649
ω=0.3 : 10.981

8.606 3.253 3.266
ω=0.3 : 4.153

ω=0.4 : 5.993 ω=0.4 : 3.253
ω=0.5 : 2.974 ω=0.5 : 2.394

L1 47.535 14.549 7.727
ω=0.3 : 13.879

2.517 0.705 0.505
ω=0.3 : 0.820

ω=0.4 : 6.535 ω=0.4 : 0.451
ω=0.5 : 2.768 ω=0.5 : 0.243

L2 54.045 17.939 10.173
ω=0.3 : 18.403

2.232 0.549 0.355
ω=0.3 : 0.658

ω=0.4 : 8.663 ω=0.4 : 0.312
ω=0.5 : 3.452 ω=0.5 : 0.096

L3 56.254 18.163 9.793
ω=0.3 : 17.984

1.902 0.421 0.206
ω=0.3 : 0.392

ω=0.4 : 8.203 ω=0.4 : 0.187
ω=0.5 : 3.193 ω=0.5 : 0.041

Table 8. Quantitative results with mAP and LocScore under various backbones.
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INSTRE ILIAS
model Level mAP LocScore mLocScore LocScore(ω) mAP LocScore mLocScore LocScore(ω)

ConvNext LAION2b L0 77.949 19.005 9.171
ω=0.3 : 15.531

41.253 11.886 9.156
ω=0.3 : 12.752

ω=0.4 : 8.135 ω=0.4 : 8.672
ω=0.5 : 3.847 ω=0.5 : 6.043

L1 86.710 24.872 11.977
ω=0.3 : 21.397

50.754 16.078 12.302
ω=0.3 : 19.025

ω=0.4 : 10.228 ω=0.4 : 11.002
ω=0.5 : 4.306 ω=0.5 : 6.880

L2 91.524 30.159 16.453
ω=0.3 : 30.010

60.215 20.789 17.296
ω=0.3 : 27.039

ω=0.4 : 13.943 ω=0.4 : 16.130
ω=0.5 : 5.407 ω=0.5 : 8.719

L3 92.870 30.936 16.953
ω=0.3 : 31.109

64.441 22.221 18.333
ω=0.3 : 29.363

ω=0.4 : 14.263 ω=0.4 : 16.688
ω=0.5 : 5.488 ω=0.5 : 8.948

DINOv2 L0 57.701 15.074 8.063
ω=0.3 : 13.593

40.557 12.181 9.698
ω=0.3 : 13.332

ω=0.4 : 7.185 ω=0.4 : 9.374
ω=0.5 : 3.411 ω=0.5 : 6.386

L1 64.621 18.738 8.781
ω=0.3 : 16.078

46.825 14.932 11.476
ω=0.3 : 16.526

ω=0.4 : 7.285 ω=0.4 : 10.594
ω=0.5 : 2.980 ω=0.5 : 7.309

L2 69.978 22.183 11.065
ω=0.3 : 20.583

52.918 17.371 13.460
ω=0.3 : 20.722

ω=0.4 : 9.056 ω=0.4 : 12.330
ω=0.5 : 3.556 ω=0.5 : 7.328

L3 72.543 22.216 10.343
ω=0.3 : 19.611

57.515 18.492 13.999
ω=0.3 : 22.401

ω=0.4 : 8.233 ω=0.4 : 12.485
ω=0.5 : 3.184 ω=0.5 : 7.110

OpenCLIP L0 73.837 18.107 8.638
ω=0.3 : 14.594

31.598 9.183 7.143
ω=0.3 : 9.696

ω=0.4 : 7.659 ω=0.4 : 6.827
ω=0.5 : 3.660 ω=0.5 : 4.904

L1 78.812 23.034 11.454
ω=0.3 : 21.196

39.819 12.170 9.302
ω=0.3 : 14.501

ω=0.4 : 9.428 ω=0.4 : 8.278
ω=0.5 : 3.737 ω=0.5 : 5.129

L2 85.594 29.556 18.428
ω=0.3 : 33.733

48.878 16.425 14.039
ω=0.3 : 21.976

ω=0.4 : 15.674 ω=0.4 : 13.256
ω=0.5 : 5.877 ω=0.5 : 6.885

L3 87.565 30.370 18.936
ω=0.3 : 34.804

53.351 17.945 14.767
ω=0.3 : 23.706

ω=0.4 : 16.053 ω=0.4 : 13.598
ω=0.5 : 5.953 ω=0.5 : 6.998

SigLIP L0 78.483 18.918 9.120
ω=0.3 : 15.261

55.029 14.305 9.969
ω=0.3 : 14.345

ω=0.4 : 8.135 ω=0.4 : 9.469
ω=0.5 : 3.965 ω=0.5 : 6.095

L1 83.056 21.719 10.335
ω=0.3 : 17.815

59.449 16.631 11.911
ω=0.3 : 17.504

ω=0.4 : 9.037 ω=0.4 : 11.195
ω=0.5 : 4.154 ω=0.5 : 7.033

L2 85.965 23.888 11.526
ω=0.3 : 20.255

63.319 18.842 13.888
ω=0.3 : 20.688

ω=0.4 : 9.963 ω=0.4 : 13.368
ω=0.5 : 4.360 ω=0.5 : 7.607

L3 87.015 24.285 11.397
ω=0.3 : 20.151

65.165 19.745 14.613
ω=0.3 : 21.933

ω=0.4 : 9.777 ω=0.4 : 13.933
ω=0.5 : 4.264 ω=0.5 : 7.974

Table 9. Quantitative results with mAP and LocScore under various backbones.
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S10. Qualitative Results891
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Figure S10. Qualitative results of Global and Patchify on ILIAS
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Figure S11. Qualitative results of Global and Patchify on INSTRE

14


	Introduction
	Method
	Patchify: Patch-wise Retrieval Pipeline
	LocScore: Localization-aware Metric

	Experiment
	Effectiveness of Patch-wise Representation
	Method Comparison
	Different region selection strategies
	Comparison with SOTA Methods

	Conclusion
	Overview

	Related work
	Impact of Image characteristics
	Analysis
	Implementation details
	Investigation of visual backbone
	Different region selection strategies

	Comparison with SOTA Methods
	Applying Compression to Local Features

	Extended version of Conclusion

	LocScore
	Qualitative Results

