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Patch-wise Retrieval: An Interpretable Instance-Level Image Matching

Supplementary Material

S1. Overview

This supplementary material provides extensive experimen-
tal results, implementation details, and qualitative analyses
that could not be included in the main paper due to space
constraints. Following the structure of the supplementary
text, we elaborate on the following aspects:

e Section S2 describes the trends in related research, ex-
plains how our work is positioned among them, and high-
lights the differences from prior approaches.

e Section S3 presents an analysis of the effectiveness of
global and local features in instance retrieval with re-
spect to three factors: instance size, location, and bright-
ness. The results provide insights into why local features
are more robust than global features under various condi-
tions.

» Section S4 analyzes the impact of model architecture and
pretraining data scale on retrieval performance.

* Section S5 provides a comprehensive view of how differ-
ent region-level sampling strategies affect retrieval out-
comes, and examines whether the simple Patchify method
remains competitive compared to strategies with stronger
spatial alignment.

* Section S6 explains the implementation details of the ex-
periments from Section 3.2.2 that were not described in
the main paper.

¢ Section S7 investigates how to achieve scalability while
using patch-wise features, analyzing database size, per-
formance, and the role of informative features. We show
that the choice of training features for PQ has a signifi-
cant impact on performance; in particular, features well-
aligned with target objects lead to better compression and
retrieval accuracy, underscoring the importance of infor-
mative patch selection during index construction.

* Section S8 provides an extended version of the conclu-
sion, containing discussions that could not be included in
the main paper due to space limitations.

* Section S9 covers the thresholded version of LocScore
and the mean LocScore that were not included in the main
paper, and analyzes the corresponding results.

* Section S10 presents qualitative results across a wide va-
riety of instances.

Together, these sections offer a deeper and more compre-
hensive view of our framework, clarifying design choices,
providing diagnostic analyses, and demonstrating both
the scalability and interpretability benefits of Patchify in
instance-level image retrieval.

S2. Related work

Instance-Level Image Retrieval Methods Early studies
in instance-level image retrieval relied on hand-crafted de-
scriptors such as SIFT [19] and SURF [1], which extract
local keypoints and compute image similarity via Bag-of-
Words models. With the advent of deep learning, the field
shifted toward learning feature representations using deep
convolutional backbones like VGG, Inception, and ResNet.
Global image descriptors extracted from these networks,
particularly with pooling schemes such as GeM [24], be-
came the dominant approach.

Recent advances in large-scale data-driven learning have
further led to the development of highly transferable vi-
sual representations. Models trained on vast and diverse
datasets, such as CLIP [12, 25] and DINO [2], are capa-
ble of extracting general-purpose image features that per-
form well across a wide range of downstream tasks, in-
cluding classification [10, 40], segmentation [16, 26], and
image retrieval [21, 23]. These self-supervised and vision-
language models provide strong global representations that
enable scalable and efficient retrieval systems. However,
these global descriptors often struggle with fine-grained in-
stance matching, especially when the target object is small,
occluded, or appears off-center. This limitation arises from
their lack of spatial precision, which becomes critical in
instance-level retrieval scenarios where spatial alignment
between query and retrieved content is essential.

To overcome the spatial limitations of global descriptors,
recent instance retrieval pipelines have adopted a two-stage
reranking strategy [15, 30]. In these methods, an initial
ranking is produced using global descriptors, followed by
a reranking stage that compares sets of local features be-
tween top-ranked images. Local features are typically ex-
tracted as hundreds of dense patches or region proposals
per image, and fine-grained similarity is computed across
all pairs. While this improves localization and robustness, it
introduces significant computational overhead. Each query
requires comparing thousands of patch-level embeddings,
and storing such dense local features across a database is
memory-intensive.

Our method, Patchify, addresses the above limitations
through a simple yet effective patch-based retrieval frame-
work. We divide each image into a small number of non-
overlapping grid patches and embed them independently us-
ing frozen visual encoders. Compared to reranking-based
approaches, Patchify requires only a handful of patch fea-
tures per image, drastically reducing both computation and
memory. To further improve scalability, we apply Product
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Quantization (PQ) [14] to compress patch embeddings to a
level comparable with global descriptors. Despite its sim-
plicity, Patchify achieves performance on par with state-of-
the-art global and reranking methods, and can further bene-
fit from reranking extensions. This demonstrates that care-
ful patch-level design choices can lead to highly efficient
and interpretable retrieval without compromising accuracy.

Explainability via Localization Cues As deep learning
systems grow in capability and complexity, interpretabil-
ity has emerged as a critical component for building trust-
worthy and transparent Al. The field of explainable Al
(XAI) has gained increasing attention, particularly in com-
puter vision, where spatial interpretability enables users
to understand where a model focuses during prediction.
Foundational approaches such as Class Activation Maps
(CAM) [39] and Weakly Supervised Object Localization
(WSOL) [3, 4] have laid the groundwork, and recent efforts
have expanded toward analyzing the internal structures of
large-scale models [6, 8, 9].

In contrast to prior work, our method provides inter-
pretability by design in the context of instance-level re-
trieval. Our method, Patchify, allows us to trace which
part of the image contributes most to the retrieval, unlike
traditional global descriptors that lack spatial grounding.
To quantify this interpretability, we propose LocScore, a
localization-aware metric that jointly considers retrieval ac-
curacy and spatial alignment with the ground truth. This
provides a unified measure of retrieval quality and inter-
pretability, allowing for diagnostic analysis of model be-
havior.

S3. Impact of Image characteristics
S3.1. Analysis

We investigate the effectiveness of global and local fea-
tures with respect to three factors: instance size, location,
and brightness. The first two factors are directly related to
our proposed metrics, LocScore; the last factor is a com-
mon challenge in instance retrieval. Figure S1 shows the
comparison between local and global features. Overall, we
observe that local features generally improve performance,
demonstrating robustness under varying image conditions.
As shown in Figure Sla, global features outperform lo-
cal features when the instance occupies a large portion of
the image (rightmost group). However, as the instance
size decreases, local features begin to outperform global
ones, demonstrating their advantage in small object re-
trieval. Next, we assess the effect of object location by
measuring Euclidean distance between the center of the im-
age and the center of the ground-truth bounding box. As
shown in Figure S1b, local features maintain more stable re-
trieval accuracy as the instance moves away from the center,
demonstrating greater robustness to spatial displacement.

Lastly, we analyze the impact of image brightness, quan-
tified as the average L-channel value in the Lab color space.
In Figure Slc, both global and local features achieve higher
performance on images with medium brightness, while per-
formance drops on very dark or very bright images. Nev-
ertheless, local features consistently outperform global fea-
tures across all brightness levels, even though the overall
trend is similar.

S3.2. Implementation details

We adopt CLIP and DINOV2 as the visual encoder for the
evaluation. We compare global and local (L3) features with
mAP and LocScore on ILIAS.

Object bounding box ratio We sort database images
with object size by computing the object bounding box area.
Then we divide the total object size values equally into 5
bins. For the evaluation, queries with no true positive im-
ages in a specific bin are excluded. Global feature works
well in big objects but not in small ones.

Object distance from image center We compute L2 dis-
tance between the bounding box and the image center and
sort them. Then we divide all values equally into 5 bins.
Similarly, queries with no true positive images in a specific
bin are excluded. Global features work well when the object
is centered and not so well when it is not centered.

Brightness of image Unlike the previous two experi-
ments, the evaluation benchmark datasets did not exhibit
a meaningful distribution with respect to brightness. To ad-
dress this, we applied tone mapping by scaling the L chan-
nel in the Lab color space to 0.2x, 0.6x, 1.0x, 1.4x, and
1.8x of its original value, creating five brightness-adjusted
versions of each dataset. We then measured performance on
each transformed set.

S4. Investigation of visual backbone

To better understand the impact of model architecture and
pretraining data scale on retrieval performance, we con-
duct a comparative analysis across various visual encoders.
Our results indicate that Transformer-based models such as
DINOv2, CLIP, and SigLIP consistently outperform CNN-
based counterparts like ResNet and Inception, demonstrat-
ing the effectiveness of modern architectural designs in both
retrieval accuracy and localization quality. Notably, Con-
vNeXt pretrained on LAION-2B, despite being a CNN,
achieves performance on par with Transformer-based mod-
els. This observation underscores the importance of large-
scale pretraining, which significantly enhances the general-
ization ability of learned features across architectures.
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Figure S1. mAP(%) and LocScore(%) of global and local features in terms of object size, distance from image center, and brightness
of image. We measure the performance on ILIAS. Both global and local features show a similar trend. In most cases, local features

consistently outperform global features across all settings.

Recently, many visual encoders have been proposed,
and we have to choose which visual encoder we use. In
this section, we further explore which visual encoders of-
fer the most effective representations for instance retrieval.
We analyze a diverse set of models, including both CNN-
based (e.g., VGG [28], ResNet [11], Inception [31], Con-
vNext [18]) and Transformer-based (e.g., DINOv2, CLIP,
SigLIP [37]) encoders. This analysis aims to provide
deeper insights into the architectural factors that contribute
to strong instance-level retrieval performance. Note that we
extract local features using Patchify.

Characteristic of visual encoders We compare instance
retrieval performance across encoder models with CNN-
based and Transformer-based backbones. As shown in Fig-
ure S2, based on our analysis using the ILIAS dataset, as
we use more local features, the performance generally in-
creases. ConvNeXt trained on ImageNet is an exceptional
case where the performance decreases. Although Con-
vNeXt pretrained on LAION-2B shows high performance
in CNN-based models, transformer-based models generally

achieve higher performance compared to CNN-based mod-
els.

Impact of pretraining data size of encoder In terms of
the exception case of ConvNeXt pretrained on LAION-2B,
we hypothesize that the size of the dataset used during pre-
training plays a significant role. As shown in Table 4 and
Figure S3, model performance consistently improves with
the scale of training data. Regardless of feature dimension-
ality, increasing the amount of training data improves gen-
eralization performance, which in turn enhances instance
retrieval performance. This result indicates that representa-
tion generalization is influenced by both model capacity and
data scale, consistent with findings in prior work [36, 41],
and further confirms that this relationship holds for instance
retrieval task as well that such an effect also extends to in-
stance retrieval tasks.

S5. Different region selection strategies

A simple and structured grid-based extraction strategy, as
used in our Patchify method, proved highly effective, es-
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Figure S2. Performance comparison between CNN-based backbone and Transformer-based models based on (a) mAP (%) and (b) LocScore
(%) metrics on ILIAS. For comparison, we apply the same scale to plots of CNN-based and Transformer-based models. We observe that
transformer-based models show higher performance compared to CNN-based models, except for ConvNext_laion2b.

Table 4. Impact of pretraining data size on instance retrieval per-
formance of encoders.

Dataset Encoder Tvpe mAP

(Size) (Feat. Dim) 'P° INSTRE ILIAS
VGG16 global 26.90 5.86

(4096) local 53.56 8.76

ResNet101 global 36.29 10.40

ImageNet-1K  (2048) local 61.38 16.19
(IM) Inception  global  27.94  14.62
(1536) local 45.82 23.63

ConvNext global  38.97 8.61

(1024) local 56.25 1.90

LVD-142M  DINOvV2 global 57.70 40.56
(142M) (1024) local 72.54 57.51
LAION-400M CLIP global 73.83 31.60
(400M) (768) local 87.57 53.35
LAION-2B  ConvNext global  77.95 41.25
(2B) (768) local  92.87  64.44
WebLI SigLIP global 78.48 55.03
(10B) (1024) local 87.01 65.16

pecially when combined with strong vision transformer en-
coders such as SigLIP. This raises an important question:
how does such a simple approach compare to more elabo-
rate region selection methods?

To answer this, we design a series of experiments com-
paring Patchify with alternative region sampling strate-
gies, restricting our analysis to the SigL.IP encoder, which
showed strong performance in earlier evaluations. All meth-
ods are evaluated on both the INSTRE and ILIAS datasets,
and a visual illustration is provided in Figure S4. We con-
sider the following strategies:

Global The standard approach where the entire image is
passed through the encoder to produce a single feature vec-
tor.

Patchify Our proposed method. The image is divided
into non-overlapping grid patches according to a predefined
multi-scale configuration (e.g., LO, L1, L2, L3). LO corre-
sponds to a single 1 x 1 patch (the global setting), L1 in-
cludes both 1 x 1 and 2 x 2 patches, L2 adds 3 x 3 patches,
and L3 further includes 4 x 4 patches. Each patch is in-
dependently passed through the encoder to extract local de-
scriptors. This cumulative multi-scale design enables spa-
tial interpretability, as the most similar patch can be traced
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Figure S3. Performance comparison on ILIAS under varying pre-
training data sizes. We observe that performance is low if the
amount of pre-training data is not sufficient.

to a specific image region.

Sliding windows A denser sampling variant of Patchify
with overlapping patches, using strides of 0.5 and 0.25 rela-
tive to patch size instead of a stride of 1. This increases spa-
tial coverage and the likelihood of capturing well-localized
patches, allowing us to test whether finer sampling im-
proves retrieval accuracy and spatial alignment.

Region proposals A semantically guided method using
Grounding DINO [17] to generate up to 20 high-quality
object-level bounding boxes per image. These regions are
cropped and encoded, offering an upper bound on per-
formance when informative and well-localized patches are
available.

Our comparison in Table 2 shows that sliding window meth-
ods outperform Patchify in both mAP and LocScore, with
the 0.25 stride variant achieving the best results. This sug-
gests that reducing the stride improves the likelihood of cap-
turing accurate patches. Region proposal methods, while
potentially stronger in spatial alignment, require additional
computational cost and detection models. Across strategies,
higher mAP generally coincides with higher LocScore, in-
dicating that models retrieving correct images also tend to

localize target objects more precisely. This positive corre-
lation holds for both CNN and Transformer architectures,
where increasing patch granularity consistently enhances
performance.

S6. Comparison with SOTA Methods

In this section, we describe the implementation details for
the experiments conducted in Section 3.2.2. All methods
are evaluated using SigLIP as the visual encoder, and re-
trieval performance is measured on both INSTRE [33] and
ILIAS [15] benchmarks.

AMES For AMES [30], we adopt its asymmetric
transformer-based reranking method. During inference, the
top-m images retrieved using global similarity are reranked
based on local similarities computed via transformer inter-
action between the query and database local descriptors. We
use the binary distilled variant of AMES with a universal
model trained across varying local descriptor counts. The
ensemble similarity between global and local features is
computed as a weighted combination, tuned via grid search.

ILIAS Baseline We also benchmark against the rerank-
ing strategy proposed in the ILIAS benchmark [15]. This
method involves reranking a shortlist of images retrieved
via global descriptors using dense feature correlation with
ground-truth instance boxes. As this approach depends on
densely sampled or region proposal-based local features, it
tends to have higher memory and computation overhead.

Hyperparameter Search Since reranking approaches

combine global and local similarities, hyperparameter tun-

ing is critical. We perform a grid search over the following
parameters to identify the best configuration:

e Number of reranked candidates: [0, 100, 200,
400, 800, 1000]

¢ Global-local balance weight A\: [0.0, 0.1, 0.2,
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,

1.0]

» Temperature scaling ~:
0.3, 0.4, 0.5, 0.
1.0]

We report the performance using the best configuration se-

lected from this grid for each method.

(0.0, 0.05, 0.1, 0.2,
6, 0.7, 0.8, 0.9,

S7. Applying Compression to Local Features

A well-known limitation of local feature-based retrieval
methods is their high memory usage, as they require stor-
ing a large number of descriptors per image. Unlike con-
ventional approaches, Patchify uses only a small number of
structured patch features per image, significantly reducing
the memory and computational burden. To further enhance
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(a) Global (b) Patchify

i;‘_\.

(c) Sliding (d) Region Proposal

Figure S4. Methods used in analysis. In Global, we use only one embedding. In Patchify, the local features are extracted from the patches
of an image. Sliding is similar to Patchify, but the patches have overlap. In Region Proposal, the detector is used to find the informative

object in an image and extract the local features by cropping the object.

Table 5. Comparison of mAP (%) performance under different
multi-scale levels and PQ usage.

Table 6. Comparison of mAP (%) performance using different
training features for PQ.

INSTRE ILIAS
Level Patchify PQ
mAP LocScore mAP LocScore
Lo X X 7848 18.92 55.03 14.31
X v 81.99 19.48 54.97 14.30
L v X  83.06 21.72 59.45 16.63
v v/ 86.20 22.92 57.37 15.65
L2 v X 8597 23.89 63.32 18.84
v v/ 8820 25.00 59.28 17.00
3 v X 87.01 24.29 65.16 19.75
v v/ 8852 25.08 59.96 17.33

scalability for large-scale retrieval, we apply Inverted File
with Product Quantization (IVFPQ) [14].

Database Size Table 7 shows the compression ratio when
applying IVFPQ to the database. As we increase the level
of patches, the memory consumption grows rapidly be-
cause the required memory is proportional to the square
of the patch level. However, when applying IVFPQ to the
database, the increased amount of memory is alleviated. For
example, in the INSTRE dataset, the difference in memory
between LO and L3 before IVFPQ is about 29.3 times, but
after IVFPQ, the difference is 3.6 times.

Performance comparison Table 5 presents the retrieval
performance before and after applying PQ. As expected,
compressing feature representations with PQ can lead to
a slight performance drop due to quantization. This trend
is observed on the ILIAS benchmark, where the data scale
and difficulty are substantially higher. Interestingly, on the
smaller and less challenging INSTRE benchmark, PQ even

Training Feature L0 (1) L1(5) L2(14) L3(30) G.T.(1)
mAP (%) 60.19 5580 5553 53.13  65.07

yields performance improvements, potentially due to noise
reduction or enhanced centroid generalization. Despite
compression, local features with PQ still outperform global
features in both benchmarks. Together with the memory
statistics in Table 7, these results indicate that local char-
acteristics and PQ offer complementary benefits: delivering
strong retrieval accuracy with substantially reduced storage.

Training with Informative Features Product Quantiza-
tion (PQ) requires a training phase to learn cluster cen-
troids, and the choice of training features can significantly
impact retrieval performance. To explore this, we com-
pare PQ trained with features at different patch levels (LO,
L1, L2, L3) and with ground-truth-aligned features cropped
from instance bounding boxes. As summarized in Table 6,
the highest performance is achieved when PQ is trained on
ground-truth features, emphasizing the value of using se-
mantically informative representations. Interestingly, fea-
tures from intermediate patch levels (L1 and L2) perform
worse than L0, likely due to the inclusion of background
noise or irrelevant content. These results suggest that tighter
spatial alignment during PQ training plays a crucial role,
and highlight the importance of effective region selection
strategies. This highlights a previously underexplored yet
critical aspect of PQ training and may inform more robust
design choices in future PQ-based retrieval pipelines.

To enable scalable retrieval with local features, we adopt
Inverted File with Product Quantization (IVFPQ), a widely
used technique that combines coarse clustering with quan-
tization to allow efficient approximate nearest neighbor
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search with significantly reduced memory and latency over-
head. To configure IVFPQ, we perform a grid search over
the number of subvectors m € {16,32,64} and the num-
ber of clusters nlist € {2048,4096}, and select m = 64,
nlist = 4096, and nbits = 8 based on retrieval perfor-
mance.

Table 7 summarizes the impact of increasing patch gran-
ularity on database size before and after applying IVFPQ.
As the number of patches increases from LO to L3, un-
compressed storage grows rapidly, by more than 29x on
INSTRE and 30x on ILIAS. However, with IVFPQ, this
increase is drastically reduced to just 3.6x and 1.6x, respec-
tively. These results confirm that IVFPQ effectively scales
to high-resolution patch representations, enabling practical
deployment of patch-based retrieval with minimal memory
overhead.

We investigate how the choice of training features affects
PQ effectiveness. As summarized in Table 6, the highest
performance is achieved when PQ is trained with features
extracted from ground-truth bounding boxes (G.T.), which
provide strong semantic alignment with the target instances.
In contrast, using patches from intermediate configurations
(e.g., L1 and L2) results in lower performance, possibly due
to noisy or irrelevant background content in those features.
Interestingly, PQ trained with global features (LO) outper-
forms L1 and L2, suggesting that lower-resolution but se-
mantically focused representations may be more beneficial
than ambiguous fine-grained features.

Qualitative examples in Figure S6 support this observa-
tion: G.T.-trained PQ accurately retrieves the correct in-
stance under challenging conditions such as occlusion, scale
change, and viewpoint variation, while PQ trained on L2
fails to distinguish between visually similar but incorrect
instances. These findings highlight the importance of using
informative training features for PQ optimization and offer
valuable guidance for future work on compressed local fea-
ture retrieval.

Table 7. Impact of multi-scale feature levels on storage size (MB)
before and after applying product quantization. CR denotes the
compression ratio. We observe that compression is scalable to
high-memory database.

Level INSTRE ILIAS

(No. Patches) Non-quant. Quant (CR) Non-quant. Quant (CR)
LO (1) 103.68 19.77 (5.24) 19.08 18.21 (1.05)
L1(5) 518.42 27.41 (18.91) 95.41 19.62 (4.86)
L2 (14) 1420 44.61 (31.83) 267.15 22.78 (11.73)
L3 (30) 3040  71.71(42.39) 57246 28.41(20.15)

S8. Extended version of Conclusion

In this work, we introduced Patchify, a simple yet effective
patch-wise retrieval framework that achieves strong perfor-

Figure S5. Images used to train PQ indices in each Patchify level
and G.T. We can observe that features from G.T. are related to the
instance, directly.

Retrieved Images

Query

Figure S6. Qualitative retrieval results using different PQ training
features at L3. PQ trained on G.T. finds the correct instance com-
pared to others. Thus, we also consider the informative features
when training PQ.

mance while maintaining both scalability and interpretabil-
ity. By decomposing each database image into a small set of
structured, multi-scale patches, Patchify enables spatially-
aware matching without requiring fine-tuning or region pro-
posals. Our experiments demonstrate that Patchify con-
sistently outperforms global feature baselines, adapts well
across a variety of backbones, and integrates seamlessly
into existing reranking pipelines. To evaluate the spatial
quality of retrievals, we proposed LocScore, a localization-
aware metric that captures not only retrieval accuracy but
also the alignment between retrieved regions and target ob-
jects. This metric provides valuable diagnostic insight into
how retrieval decisions are made and helps bridge perfor-
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Predicted Patch D G.T. bbox
Query

Top 2 Top 3 Top 4

AP: 1

LocScore: 0.51 lou: 0.88

AP: 1
LocScore: 0.14

loU: 0.13

loU: 0.09

loU: 0.23

loU: 0.09

Figure S7. Comparison of AP and LocScore for evaluating re-
trieval quality. Both query examples achieve perfect AP (i.e., all
ground-truth images are retrieved), yet their LocScores differ sig-
nificantly due to localization accuracy. This highlights how Loc-
Score complements AP by incorporating spatial alignment quality.

mance evaluation with model interpretability. Furthermore,
we showed that Patchify is highly scalable through the use
of Product Quantization (PQ). Our analysis revealed that the
choice of training features for PQ has a significant impact
on performance. In particular, features that are well-aligned
with target objects lead to better compression and retrieval
accuracy, highlighting the importance of informative patch
selection during index construction. Overall, Patchify of-
fers a practical and interpretable design for instance-level
image retrieval, enabling efficient matching with minimal
computation and memory overhead. Our findings point to-
ward promising future directions for retrieval systems that
combine spatial precision, scalability, and transparency.

S9. LocScore

In this section, we present additional analyses of the Loc-
Score metric that could not be included in the main paper
due to space constraints. Specifically, we report results on
the thresholded variants of LocScore as illustrated in Fig-
ure S8 and S9, the corresponding averaged metric across
thresholds, as shown in Table 8 and 9. These results provide
a more detailed understanding of how localization quality
varies under different criteria and offer further insight into
the spatial precision of retrieval systems.

As illustrated in Figure 3, the thresholded variant of Loc-
Score differs from the original continuous formulation by
enforcing a binary success criterion based on a fixed IoU
threshold §. While the original LocScore weights retrievals
proportionally to their IoU values, the thresholded version
considers a retrieved patch correct only if its IoU with the
ground-truth box exceeds . For example, in Figure 3, Top-
3 is counted as correct for 6 = 0.3 but not for § = 0.5, lead-
ing to a decrease in LocScore as the threshold increases.
This binary formulation provides a more stringent evalu-

ation of spatial alignment, complementing the continuous
score by emphasizing higher-precision localization.

Thresholded vs. Continuous LocScore Our proposed
LocScore metric comes in two variants: the thresh-
olded LocScore(d) and the continuous version, mLocScore.
These two forms offer different perspectives on evaluating
spatial alignment in retrieval results.

Thresholded LocScore(d) evaluates whether the pre-
dicted patch sufficiently overlaps with the ground-truth
bounding box based on a predefined IoU threshold 4. Only
retrieved results with IoU > ¢ are counted as correct, mak-
ing the score binary and stricter. For example, as the thresh-
old increases from 0.3 to 0.5, fewer retrievals are considered
valid, leading to a lower overall LocScore. This allows for
clear pass/fail decisions but may ignore partial matches that
are still spatially relevant.

In contrast, mLocScore provides a continuous assess-
ment by averaging the IoU values of the retrieved patches.
This formulation captures fine-grained differences in spa-
tial alignment and offers a more nuanced view of localiza-
tion quality. Unlike the binary variant, mLocScore reflects
varying degrees of correctness rather than a hard cutoff.

The difference in behavior is evident in the experimental
results. Increasing ¢ in LocScore(d) leads to a sharp drop
in scores, particularly at § = 0.5, while mLocScore ex-
hibits smoother variations and preserves relative differences
between models and feature levels. Therefore, thresholded
LocScore is more appropriate when a strict spatial correct-
ness criterion is needed, while mLocScore is preferable for
capturing overall localization trends.
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Figure S8. LocScore(d) visualizations across threshold § = 0.3, 0.4, 0.5 of CNN-based and Transformer-based models on ILIAS.
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INSTRE ILIAS

model Level | mAP LocScore mLocScore LocScore(d) | mAP LocScore mLocScore LocScore(d)
0=0.3:10.928 0=0.3: 3.540

VGG16 Lo 26.690  8.842 6.960 0=0.4:6.526 | 5.864  2.625 2.866 0=0.4:2.814
0=0.5:3.426 0=0.5:2.245

0=0.3 : 16.400 0=0.3 : 3.359

L1 39.859  13.697 9.453 0=0.4:8.295 | 7.399 2.718 2.468 0=0.4 : 2.396

0=0.5 : 3.665 0=0.5:1.649

0=0.3 : 24.852 0=0.3: 3.852

L2 51.186  19.189 14.331 0=0.4: 12.865 | 8.485 2.978 2.728 0=0.4:2.614

0=0.5:5.277 0=0.5:1.719

0=0.3: 25.461 0=0.3:3.941

L3 53.562 19.813 14.561 0=0.4:12.999 | 8.764  3.030 2.716 0=0.4:2.595

0=0.5:5.223 0=0.5:1.613

0=0.3:11.643 0=0.3:5.296

ResNet101 Lo 36.288 10.763 7.147 0=0.4:6.505 | 10.396  4.111 4.064 0=0.4: 3.908
0=0.5:3.293 0=0.5:2.989

0=0.3:17.410 0=0.3:6.110

L1 48.757 15.892 9.725 0=0.4:8.259 | 13300 4.941 4.367 0=0.4: 4.158

0=0.5: 3.504 0=0.5:2.832

0=0.3 : 25.269 0=0.3:7.309

L2 58.588 21.058 14.150  6=0.4:12.284|15.410 5.573 4.969 0=0.4 : 4.640

0=0.5 : 4.896 0=0.5:2.959

0=0.3: 25.138 0=0.3:7.276

L3 61.382 21.558 13.893  0=0.4:11.894|16.193  5.625 4.853 0=0.4: 4.467

0=0.5: 4.646 0=0.5:2.815

0=0.3 : 9.066 0=0.3:6.410

Inception Lo 27.943 8435 5.585 0=0.4:5.105 | 14.624  5.260 4.859 0=0.4:4.812
0=0.5:2.584 0=0.5:3.355

0=0.3: 11.091 0=0.3 : 7.807

L1 34.592  10.866 6.325 0=0.4:5.464 | 18.026 6418 5.545 0=0.4:5.275

0=0.5:2.422 0=0.5:3.552

0=0.3: 13.787 0=0.3:9.831

L2 42.077 13.755 7.676 0=0.4:6.513 |21.385 7.484 6.557 0=0.4: 6.187

0=0.5:2.728 0=0.5: 3.652

0=0.3 : 12.808 0=0.3:9.769

L3 45822  14.112 6.952 0=0.4:5.698 |23.631 7.757 6.310 0=0.4:5.810

0=0.5: 2.350 0=0.5:3.350

0=0.3 : 10.981 0=0.3: 4.153

ConvNext IN1k L0 38.972  11.006 6.649 0=0.4:5.993 | 8.606  3.253 3.266 0=0.4:3.253
0=0.5:2.974 0=0.5:2.394

0=0.3: 13.879 0=0.3: 0.820

L1 47.535 14.549 7.727 0=0.4:6.535 | 2.517  0.705 0.505 0=0.4:0.451

0=0.5: 2.768 0=0.5:0.243

0=0.3 : 18.403 0=0.3: 0.658

L2 54.045 17.939 10.173 6=0.4:8.663 | 2.232  0.549 0.355 0=0.4:0.312

0=0.5:3.452 0=0.5: 0.096

0=0.3:17.984 0=0.3: 0.392

L3 56.254 18.163 9.793 0=0.4:8.203 | 1.902  0.421 0.206 0=0.4:0.187

0=0.5:3.193 0=0.5:0.041

Table 8. Quantitative results with mAP and LocScore under various backbones.
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INSTRE ILIAS

model Level | mAP LocScore mLocScore LocScore(d) | mAP LocScore mLocScore LocScore(d)
0=0.3: 15.531 0=0.3: 12.752

ConvNext LAION2b L0 77.949  19.005 9.171 0=0.4:8.135 |41.253 11.886 9.156 0=0.4: 8.672
0=0.5: 3.847 0=0.5:6.043

0=0.3:21.397 0=0.3: 19.025

L1 86.710 24.872 11977  6=0.4:10.228|50.754 16.078 12.302  6=0.4: 11.002

0=0.5 : 4.306 0=0.5: 6.880

6=0.3: 30.010 0=0.3: 27.039

L2 91.524  30.159 16453  §=0.4:13.943|60.215 20.789 17296  6=0.4:16.130

0=0.5 : 5.407 0=0.5:8.719

6=0.3: 31.109 0=0.3: 29.363

L3 92.870 30.936 16.953  0=0.4:14.263 | 64.441 22221 18.333  6=0.4: 16.688

0=0.5: 5.488 0=0.5: 8.948

0=0.3: 13.593 0=0.3: 13.332

DINOV2 Lo 57.701 15.074 8.063 6=0.4:7.185 |40.557 12.181 9.698 0=0.4:9.374
0=0.5:3.411 0=0.5: 6.386

0=0.3: 16.078 0=0.3: 16.526

L1 64.621 18.738 8.781 6=0.4:7.285 |46.825 14.932 11.476  6=0.4:10.594

6=0.5: 2.980 0=0.5:7.309

0=0.3: 20.583 0=0.3:20.722

L2 69.978 22.183 11.065 6=0.4:9.056 | 52918 17.371 13.460  6=0.4:12.330

0=0.5: 3.556 0=0.5:7.328

0=0.3:19.611 0=0.3 : 22.401

L3 72.543  22.216 10.343 0=0.4:8.233 |57.515 18.492 13.999  6=0.4:12.485

0=0.5:3.184 0=0.5:7.110

0=0.3: 14.594 0=0.3 : 9.696

OpenCLIP L0 73.837 18.107 8.638 0=0.4:7.659 |31.598  9.183 7.143 0=0.4: 6.827
0=0.5 : 3.660 0=0.5: 4.904

0=0.3:21.196 6=0.3: 14.501

L1 78.812 23.034 11.454 0=0.4:9.428 |39.819 12.170 9.302 0=0.4:8.278

0=0.5: 3.737 0=0.5:5.129

0=0.3 : 33.733 0=0.3:21.976

L2 85.594  29.556 18.428  §=0.4:15.674|48.878 16.425 14.039  6=0.4: 13.256

0=0.5:5.877 0=0.5: 6.885

6=0.3 : 34.804 0=0.3 : 23.706

L3 87.565 30.370 18.936  0=0.4:16.053|53.351 17.945 14.767  §=0.4:13.598

0=0.5:5.953 0=0.5: 6.998

6=0.3: 15.261 0=0.3: 14.345

SigLIP L0 78.483 18918 9.120 6=0.4: 8.135 | 55.029  14.305 9.969 0=0.4: 9.469
0=0.5: 3.965 0=0.5: 6.095

0=0.3:17.815 0=0.3: 17.504

L1 83.056 21.719 10.335 6=0.4:9.037 |59.449 16.631 11.911 0=0.4:11.195

0=0.5:4.154 0=0.5:7.033

0=0.3:20.255 0=0.3 : 20.688

L2 85.965 23.888 11.526 0=0.4:9.963 | 63.319 18.842 13.888  6=0.4:13.368

0=0.5 : 4.360 0=0.5: 7.607

6=0.3:20.151 0=0.3:21.933

L3 87.015 24.285 11.397 0=0.4:9.777 | 65.165 19.745 14.613  6=0.4:13.933

0=0.5: 4.264 0=0.5:7.974

Table 9. Quantitative results with mAP and LocScore under various backbones.
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891 S10. Qualitative Results
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Figure S10. Qualitative results of Global and Patchify on ILIAS
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Figure S11. Qualitative results of Global and Patchify on INSTRE
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