When XAI meets Compression & Sub-graph Discovery Pruning By Explaining Revisited: Optimizing Attribution Methods to Prune CNNs & Transformers

Sayed Mohammad Vakilzadeh Hatefi, Maximilian Dreyer, Reduan Achtibat, Thomas Wiegand, Wojciech Samek, Sebastian Lapuschkin

BIFOLD

TECHNISCHE UNIVERSITÄT BERLIN

Pruning by Explaining

Optimize XAI for Pruning

\rightarrow Our Pruning Framework

Given a set of reference samples $\mathcal{X}_{\mathrm{ref}}$ defined as:

$$\mathcal{X}_{ ext{ref}} = \{x_1, x_2, \dots, x_{n_{\{ ext{ref}}}\}\}$$

Importance score of a component ψ_k can be computed by:

$$ar{R}_{\psi_k} = rac{1}{n_{ ext{ref}}}\sum_{i=1}^{n_{ ext{ref}}}R_{\psi_k}(x_i)$$

But, how should we compute R_{ψ_k} ? In other words, what is a <u>reliable</u> pruning criterion?

+ Use relevance scores of Layer-wise Relevance Propagation:

$$R_{i\leftarrow j}^{(l-1,l)}=rac{z_{ij}}{z_j}R_j^l$$

What is an **advantage** of this criterion?

+ LRP's relevance scores are intrinsically **normalized** due to their conservation property across layers.

How large should be the set of reference samples $\mathcal{X}_{\mathrm{ref}}$?

+ The more samples used for attribution, the more stable the pruning is. However, for **CNNs**, the work of [1] has shown that **10 reference samples** per class is sufficient.

+ For **Transformers** on the other hand, our experiments conveyed that **only 1 reference sample** generates robust relevance scores for pruning.

→ Optimization of XAI Methods

Typically takes place to generate **faithful explanations**, but solutions are **not necessarily optimal for pruning**. So, why don't we **optimize XAI for pruning** directly?

CNNs have quite **sufficient amount of parameters** and thus not much can be pruned from them based on the default task

Experiments

(i.e., ImageNet 1000-class classification). **Explanations that faithfully attribute CNNs**, perform well on pruning as well.

Transformers are typically more **overparameterized** than CNNs, which induce more pruning rates while keeping high performance given the default task. Unlike CNNs, **a faithful explainer** of Transformers **does not guarantee stable pruning**, thus **encouraging extra optimization** of explainer.

Overall, **LRP-Epsilon** [2, 3, 4] is a **promising explainer for pruning** across different architectures.

References

[1] Yeom et al. Pruning by explaining: A novel criterion for deep neural network pruning. Pattern Recognition 115, 107899 (2021)
[2] Bach et al. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PloS one 10(7), e0130140 (2015)

[3] Montavon et al. **Layer-wise relevance propagation: an overview**. Explainable AI: interpreting, explaining and visualizing deep learning pp. 193–209 (2019)

[4] Achtibat et al. **AttnLRP: Attention-aware layer-wise relevance propagation for transformers**. In: Proceedings of the 41st International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 235, pp. 135–168. PMLR (21–27 Jul 2024)

