
       Our Pruning Framework

Importance score of a component        can be computed by:

But, how should we compute         ? In other words, what is a 
reliable pruning criterion?



+ Use relevance scores of :Layer-wise Relevance Propagation

What is an advantage of this criterion?



+ ’s relevance scores are intrinsically normalized due to 
their conservation property across layers.



How large should be the set of reference samples         ?



+ The more samples used for attribution, the more stable the 
pruning is. However, for CNNs, the work of [1] has shown that 
10 reference samples per class is sufficient.



+ For Transformers on the other hand, our experiments 
conveyed that only 1 reference sample generates robust 
relevance scores for pruning.

LRP

       Optimization of  Methods



Typically takes place to generate , but 
solutions are not necessarily optimal for pruning.

So, why don’t we  directly?


XAI

faithful explanations

optimize  for pruningXAI

         and  in Pruning



 have quite  and thus 
not much can be pruned from them based on the default task   
(i.e., ImageNet 1000-class classification). 

, perform well on pruning as well.



 are typically more  than 
CNNs, which induce more pruning rates while keeping high 
performance given the default task. Unlike CNNs, 

 of Transformers does not guarantee stable 
pruning, thus  of explainer.



Overall,  [2, 3, 4] is a 
 across different architectures.

CNNs

CNNs sufficient amount of parameters

Transformers

Transformers overparameterized

Explanations that 
faithfully attribute CNNs

a faithful 
explainer

encouraging extra optimization

LRP-Epsilon promising explainer for 
pruning

Given a set of reference samples          defined as:
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