When XAl meets Compression & Sub-graph Disc
Pruning By Explaining Revisited: Optimizing Attribution
Methods to Prune CNNs & Transformers
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Pruning by Explaining
—> Our Pruning Framework
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Given a set of reference samples X..¢ defined as:

C)//

/

D plane
D .

Xref - {m17m27 s

) wn{ref} }

Original
Network

. corgi
@Dl

Importance score of a component Yk can be computed by:
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Heatmap components But, how should we compute Ry, ? In other words, what is a

reliable pruning criterion?

D plane

« ) O
E % D D Q k‘ D + Use relevance scores of Layer-wise Relevance Propagation:
gz’ C) D - C) o R(l L) _ Zij Rl
’ - O =
Test Sample pecrzitan J

What is an advantage of this criterion?

Optimize XAl for Pruning

+ LRP’s relevance scores are intrinsically normalized due to

Naive Attribution- their conservation property across layers.
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Experiments
Comparison of Different Pruning Criteria Overparametrization of CNNs vs
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