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Abstract

Post-hoc explainability methods (e.g., Grad-CAM, In-
tegrated Gradients, LIME, SHAP) are widely adopted
in weakly supervised semantic segmentation (WSSS) as
pseudo-annotators or seed generators. This paper ar-
gues that these visual explanations, while convenient,
often produce unreliable and misaligned cues for seg-
mentation. Drawing on experiments with Pascal VOC
2012, CUB-200-2011, and USIS10K, we highlight how
saliency-based explanations are frequently inconsistent
across methods, focus on incomplete or spurious re-
gions, and show poor correlation with actual object
masks or downstream segmentation performance. We
demonstrate qualitatively and quantitatively how indi-
vidual explainers can fail– e.g., highlighting only small
discriminative parts of an object or even background
artifacts— and how different explainers often disagree
with each other on the same image. Using a foundation
segmentation model like Segment Anything Model as a
proxy for high-quality segmentation, we reveal signifi-
cant mismatches between explanation maps and object
extents. These findings question the trustworthiness of
saliency maps as supervision signals for segmentation.
We further discuss the gap between interpretability vs.
utility: an explanation may faithfully reflect a model’s
prediction logic and yet be a poor proxy for the full ob-
ject region needed in segmentation tasks. We conclude
with challenges for the XAI and segmentation communi-
ties: Should we blindly trust visual explanation maps for
pixel-level supervision? How do we ensure their faith-
fulness and consistency if repurposed for guiding seg-
mentation models? Can we evaluate explainer quality
using downstream segmentation performance? Our po-
sition advocates for a principled re-examination of ex-
plainer reliability in WSSS, aiming to foster methods
that bridge the gap between human-interpretable expla-
nations and effective segmentation cues.

1. Introduction

Position. Post-hoc attribution maps are designed to re-
flect a classifier’s decision basis, not to delineate objects
exhaustively. Treating them as segmentation surrogates
in WSSS is therefore fragile by design. Our stance is
not to “disprove” explainers, but to articulate a practi-
cal framework that (i) diagnoses the spatial complete-
ness of explanations via a strong proxy oracle and (ii) re-
purposes explanations as guidance signals—not pseudo
ground truth—for mask refinement.

Weakly-Supervised Semantic Segmentation (WSSS)
aims to learn pixel masks from cheap supervision
(e.g. image labels) instead of dense pixel-level anno-
tations [32]. A common pipeline first trains a classi-
fier, extracts spatial localization cues via Class Activa-
tion Maps (CAMs) or related post-hoc explanations, and
uses them as seeds [26, 28], linking the presence of a
class to image regions [11]. This practice is effective yet
conceptually mismatched: saliency emphasizes discrim-
inative regions, whereas segmentation requires complete
object extents. Decades of observation confirm partial-
coverage and context-bias artifacts [2, 17, 21, 27]. For
example, a CAM may strongly highlight the wings on
an aeroplane or the belly of a bird but neglect the plane’s
body or the bird’s crown shown in Figure 1. This well-
known partial activation problem results in incomplete
pseudo-labels, which in turn undermines the final seg-
mentation performance.

Indeed, it is widely recognized that using only image-
level supervision causes classifiers to focus on small
salient parts of objects rather than their full extent [27].
WSSS pipelines must therefore cope with these imper-
fect seeds. A long line of WSSS research has proposed
methods to refine CAM outputs— for instance, by en-
forcing consistency under image perturbations, propa-
gating labels with affinity between pixels, or calibrating
activation thresholds [3, 6, 32].

In parallel, Explainable AI (XAI) has developed a



Figure 1. Illustration of misalignment. Top: class-conditioned heatmaps overlayed for the “aeroplane” (Pascal VOC) and “brown
thrasher” (CUB-200-2011); Bottom: proxy masks from SAM2 prompted by respective explanation cues; misalignment is expected
for attributions and quantified by our protocol.

range of post-hoc explanation techniques beyond CAM.
Gradient-based methods like Grad-CAM, Grad-CAM++
and VarGrad; perturbation-based methods like Local
Interpretable Model-agnostic Explanations (LIME) and
SHapley Additive exPlanations (SHAP); and attribution
methods like Integrated Gradients (IG) all aim to high-
light “important” pixels for a classifier’s prediction [21].
In WSSS, some works have adopted or fused such ex-
plainers to improve segmentation cues [4, 23], assuming
that complementary maps may better localize objects.

This, however, raises key concerns about consistency
and trust: if different explanation methods produce sub-
stantially different maps for the same input and model,
which one (if any) should we trust? Do they highlight
the same important regions or present conflicting sig-
nals? Moreover, are these maps reliable enough to serve
as segmentation surrogates? The community already
knows attribution ̸= segmentation; what is missing is
a lightweight, reproducible bridge that (i) measures the
gap and (ii) uses explanations safely as assistance rather
than supervision, with limitations spelled out.

We compile evidence across Pascal VOC [5], CUB-
200 [24], USIS10K [15], and Kvasir-SEG [9] show-
ing that maps—gradient, attribution, and perturbation
based—are inconsistent and often incomplete when
judged against object masks. Rather than seeking a sin-
gle “correct” explainer, we (1) quantify inter-explainer
disagreement and (2) use a frozen foundation segmenter
(SAM2) [20] as a proxy oracle to assess coverage/spill
and to refine fused explanation cues into full masks.
This turns explanations into an actionable but validated
signal. Related evaluation agendas (OpenXAI, Quantus)
likewise argue for careful, task-aware assessment [1, 8].

Table 1. Comparison of four datasets used in this study.

Dataset #Classes #Images Domain

CUB-200-2011 200 11,788 Bird species (fine-grained)

Pascal VOC2012 20 1,450 General objects (natural)

USIS10K 7 10,632 Underwater scene (natural)

Sessile-Kvasir-SEG 1 (polyp) 1,000 Gastroenterology (medical)

Fig. 1 illustrates the core tension: explanations often
highlight only parts of an object, while the proxy mask
covers the whole. Our contributions are:
• Positioned diagnosis: a simple protocol to evalu-

ate explanation completeness with a proxy oracle
(coverage/spill + pointing game), clarifying why raw
saliency is brittle for WSSS.

• Practice recipe: per-image, confidence-weighted
multi-explainer fusion and dual-threshold prompting
that turns saliency into foreground/background guid-
ance for SAM2—no learnable prompts, no FM fine-
tuning.

• Transparent scope: results reported on a frozen
ResNet-50 classifier (ImageNet-1k). Preliminary
tests with DeiT-S/ViT-B and Swin-T on two datasets
showed marginal gains; we keep them out of scope
here to focus on the position and protocol.

Scope & Assumptions. Strict WSSS assumes no seg-
mentation supervision. Using a frozen foundation model
(FM) at inference as a refiner does not introduce task-
specific mask labels but does import a powerful segmen-
tation prior. We thus adopt the term FM-assisted weak
supervision and explicitly report this limitation and its
implications (Sec. 4).



2. Failure Modes of Visual Explanations

Despite their popularity in WSSS pipelines, post-hoc
methods exhibit behaviors that are desirable for inter-
pretability yet problematic for supervision. Saliency
emphasizes features most decisive for the class (faithful-
ness), which may omit non-decisive object parts (com-
pleteness). We summarize representative behaviors—
partial coverage, contextual cues (“Clever Hans”) [12],
and instability across stochastic perturbations—together
with simple quantitative probes that matter for WSSS
(Table 2).

Incomplete Object Coverage: CAM-based meth-
ods typically focus on small, highly discriminative re-
gions, ignoring less class-relevant regions. This leads to
fragmentary localization. For instance, Score-CAM for
the “bird” class may activate on the beak or belly but
miss the rest of the body. We measured the overlap be-
tween explanation maps and ground-truth masks (using
the Intersection-over-Union (IoU), after suitable thresh-
olding of the maps). Our experiments show Score-CAM
achieves only 0.4–0.6 on average across datasets (Ta-
ble 2), confirming that a large portion of the object is left
unexplained. This aligns with the latest findings that par-
tial localization is a fundamental limitation of classifier-
based saliency [30]. Even FasterScore-CAM or VarGrad
offer only modest improvements, frequently missing
substantial object parts. Some attribution methods, like
IG, can produce even more sparse or diffuse maps with
scattered pixel importance and weak coverage depend-
ing on how they accumulate importance. Conversely,
Grad-CAM can occasionally overspread into the back-
ground when the discriminative region is broad or over-
laps multiple objects, producing coarse masks. Thus,
explainers may either under-cover or over-generalize.

Spurious Regions and Artifacts: Another issue is
that explanation maps may highlight irrelevant back-
ground. Since explainers reflect what influences model
predictions, they can surface contextual artifacts. For in-
stance, in the CUB-200-2011, the classifier may rely on
parts of a perch or background foliage that correlate with
certain bird species, and saliency maps highlight those
instead of the bird. In Pascal VOC, Score-CAM some-
times activates on photographic vignette edges, which
obviously are not part of the object. In medical imag-
ing, saliency maps have been shown to “focus on spu-
rious correlations, e.g., patches, bubbles, or ruler marks
introduced during image acquisition,” instead of actual
pathology [18]. Such false positives in the explanation
can mislead segmentation if used as seed annotations,
causing the model to learn background regions. We also
observed quantitatively that perturbation-based methods
(e.g., LIME, SHAP) often exhibit low precision, with
many highlighted pixels falling outside the true object.

Figure 2. Qualitative comparison of post-hoc explanations
across datasets. The red dot marks the global maximum of
each map (used for Pointing-Game@1 and as a seed cue in our
pipeline). These examples illustrate incomplete coverage and
inter-explainer disagreement, which become more pronounced
in cluttered (USIS-10K) and medical (Kvasir-SEG) scenes.

Noisy and Unstable Attributions: Different expla-
nation techniques also show idiosyncratic noise patterns.
For instance, Occlusion which blanks out patches to
see the effect on output can produce noisy, grid-like
saliency maps, with many false flickers on background
regions. LIME perturbs superpixels, but highlighted re-
gions may straddle object boundaries or include irrel-
evant areas. SHAP, especially with image baselines,
assigns both positive and negative contributions, creat-
ing confusing or scattered maps. These methods are
often unstable—small changes to the input or random
seeds can shift results and would require extensive post-
processing to be usable as segmentation seeds.

In summary, each explainer exhibits distinct features,
as summarized in Table 2. If one were to treat these raw
explanation maps as input prompts for training a seg-
mentation model, models may learn incomplete or mis-
leading object structures. In practice, WSSS pipelines
apply additional steps (such as iterative expansion of
seeds, graphical model smoothing like CRFs, or com-
bining multiple maps) to correct for these incomplete or
noisy localization cues [28]. The need for such correc-
tion underscores our position: image classifiers (through
explanations), in isolation, are not consistently trust-
worthy for segmentation. See also systematic evalua-
tions [1, 8, 16, 19] for complementary diagnoses.

3. Inter-Explainer Disagreement and Trust
Implications

Post-hoc methods often provide different but valid per-
spectives on the same decision [25]. Accordingly, we
treat cross-method agreement not as a ground truth but
as a stability proxy: high agreement suggests robust,
non-idiosyncratic evidence; sharp disagreement flags
potential artifacts or narrow features [1, 8].



Table 2. Comparison of explanation methods: key characteristics, computational cost, strengths/weaknesses, and quantitative align-
ment (mIoU ↑, Effectiveness ↑ [31] , Localization Accuracy ↑ [29]) between explanation maps and ground-truth mask (ResNet-50).

Method Granularity Cost Strengths Weaknesses CUB-200-2011 Pascal VOC 2012 USIS10K

(IoU / Eff. / L. Acc.) (IoU / Eff. / L. Acc.) (IoU / Eff. / L. Acc.)

Grad-CAM Coarse Low Fast; stable; decent
fidelity

Partial object
coverage; coarse

0.70 / 0.84 / 0.96 0.70 / 0.78 / 0.94 0.55 / 0.54 / 0.89

Grad-CAM++ Coarse Low–Moderate Improved coverage for
multiple objects

Still coarse; depends
on conv. features

0.72 / 0.87 / 0.95 0.71 / 0.74 / 0.95 0.74 / 0.48 / 0.92

Score-CAM Moderate High Sharp maps; high
fidelity

Slow; Expensive;
sensitive to masks

0.56 / 0.72 / 0.92 0.65 / 0.70 / 0.94 0.52 / 0.56 / 0.88

FasterScore-
CAM

Moderate Moderate 10× faster than
Score-CAM

Skips minor features;
still costly

0.49 / 0.59 / 0.94 0.64 / 0.72 / 0.92 0.54 / 0.59 / 0.85

Integrated
Gradients

Fine Moderate Pixel-level detail;
theoretical
completeness

Noisy attributions;
multiple steps;
gradient dilution

0.66 / 0.81 / 0.81 0.55 / 0.64 / 0.78 0.57 / 0.61 / 0.78

VarGrad Fine Moderate–High Stability via averaging
gradients

Oversmoothing;
sampling cost

0.40 / 0.44 / 0.62 0.40 / 0.62 / 0.60 0.42 / 0.46 / 0.76

Occlusion Patch-Level High Causal;
model-agnostic

Slow; coarse heatmaps 0.48 / 0.71 / 0.65 0.44 / 0.81 / 0.80 0.66 / 0.50 / 0.87

KernelSHAP Superpixel-
Level

High Fair, model-agnostic,
local

Heavy sampling;
blocky maps

0.31 / 0.46 / 0.82 0.40 / 0.68 / 0.78 0.29 / 0.44 / 0.90

LIME Superpixel-
Level

High Broad part coverage;
interpretable

blocky; heavy
sampling; low fidelity

0.48 / 0.72 / 0.86 0.46 / 0.50 / 0.75 0.42 / 0.55 / 0.88

Fused-
Weighted

Fine Moderate Consistent; high
utility

Requires fusion,
added complexity

0.77 / 0.91 / 0.96 0.78 / 0.81 / 0.84 0.55 / 0.60 / 0.92

We evaluated multiple explainers on the same clas-
sifier across thousands of images and observed surpris-
ingly low-to-moderate agreement. For example, Grad-
CAM might highlight a highly discriminative region,
while LIME, due to its superpixel approach, picks a
completely different region—or several scattered ones.
Figure 2 visualizes such divergence. Quantitatively,
pairwise mIoU between Grad-CAM and LIME on Pas-
cal VOC was often below 0.4, with similar low over-
lap between other methods (e.g., SHAP, IG, Score-
CAM). Each explainer offers a distinct view, shaped
by its assumptions—gradients, perturbations, or attribu-
tion—producing differing saliency maps. This inconsis-
tency isn’t unique to image models. Prior studies (e.g.,
human activity recognition) have shown that SHAP and
Grad-CAM may disagree even on feature importance
rankings [22]. The underlying message holds: expla-
nation is method-dependent.

In the absence of ground-truth explanations, cross-
method agreement can serve as a proxy for stability: if
diverse methods highlight the same region, it is likely
meaningful, whereas outliers may reflect artifacts. Al-
though some works compare saliency maps to segmen-
tation masks (e.g., IoU), such evaluations are rare—only
21% of XAI papers report localization metrics [18].
Other approaches reward consensus (low entropy) or pe-
nalize outliers (e.g., KL divergence), but this remains
problematic since classification lacks true pixel-level
ground truth unlike segmentation.

From a trust standpoint, explanations should be

judged relative to use. For WSSS, stability and spatial
completeness matter; for auditing, sensitivity/deletion
may suffice. We therefore report both. Naı̈ve averag-
ing is suboptimal; confidence-weighted fusion balances
sharpness and consensus. (Sec. 4).

For WSSS, the issue is more pressing: which ex-
plainer’s map should serve as the signal prompts? The
lack of consistency should be a red flag– trust in expla-
nations should be provisional, not absolute. Some ap-
proaches attempt to fuse maps, hoping to amplify con-
sensus and suppress noise [3, 7]. While fusion (espe-
cially with learned confidence weights using Entropy-
KL-IOU metric) improves explanation-driven segmen-
tation outcomes quantitatively, sometimes exceeding
any single explainer by ≥+6 mIoU, it also raises com-
plexity in that one must decide how to weight or com-
bine the maps. Also, requiring multiple explainers to
concur is computationally expensive and not commonly
done in practice. If done naı̈vely (e.g., an unweighted
average of saliency maps), the result can be a blurry
heatmap that still doesn’t align with object boundaries.
Instead, many application pipelines still rely on a sin-
gle explainer (often Grad-CAM due to its popularity and
ease), ignoring disagreement.

In summary, visual explanation is not a ground-truth
entity but rather an output heavily influenced by the
choice of algorithm. In our experiments, explainers not
only disagreed on pixel regions but also on shape and
structure shown in fig. 2. Typical behaviors are visi-
ble: Grad-CAMs focus on coarse, highly discriminative



parts; Score-CAM captures more area but often spills
into background; Integrated Gradients is sparse/edge-
like; VarGrad oversmooths; Occlusion shows blocky
grid artifacts; LIME/Kernel SHAP produce superpixel
blocks that frequently include background. Such differ-
ences complicate fusion and interpretation. For WSSS,
this creates variability in pseudo-labels and downstream
performance. Until explainers become more consis-
tent—or until we can reliably assess their accuracy,
leveraging them as tools should be done with caution.
A weighted fusion helps, as is evident in Table 2, but
highlights the core issue: no single explainer suffices;
only by acknowledging their limitations and disagree-
ments can we begin to use them meaningfully.

4. Foundation Models as a Proxy for
Ground Truth

Using a frozen segmenter such as SAM2 [20] at in-
ference introduces a powerful segmentation prior. Un-
der strict WSSS, this breaks the purist assumption. We
therefore adopt the practical lens of FM-assisted weak
supervision: (i) the classifier is supervised only by im-
age labels, (ii) the foundation model is not fine-tuned or
prompt-trained, and (iii) explanations act solely as guid-
ance cues for refinement—akin to classical CRF post-
processing, but stronger. We explicitly report this limi-
tation.

Protocol. Given per-image saliency maps {Ek} from
diverse explainers, we compute per-image weights wk

by maximizing a simple criterion favoring consensus &
confidence: high IoU with the running fusion, low en-
tropy, and low KL divergence. The fused map EΣ =∑

k wkEk is then turned into dual cues via adaptive
percentiles: top-85% pixels → foreground points (P ),
bottom-10% pixels → background points (B). We feed
(P,B) to SAM2 to obtain a refined mask M̂ (no learn-
able prompts). We evaluate explanations by (Coverage,

Figure 3. FM-assisted refinement pipeline. A frozen classi-
fier (ResNet-50) yields a post-hoc map (e.g., Grad-CAM++),
which we convert to dual-threshold cues to prompt a frozen
SAM2 and obtain the predicted mask. An Otsu-thresholded
saliency mask serves as a direct baseline; ground truth is used
only for evaluation. SAM2 thus acts as a proxy oracle that re-
fines incomplete saliency into segmentation-quality masks.

Spill) against a reference mask M and evaluate masks
by mIoU against GT where available.

Evaluating how well saliency-based explanations
align with object boundaries is inherently challenging—
especially in weakly supervised settings where pixel-
level annotations are absent. To circumvent this, we
leverage recent advances in foundation models like Seg-
ment Anything (SAM2) as a proxy for ground truth.
SAM’s zero-shot segmentation abilities, trained on over
1 billion masks, make it a strong candidate for ap-
proximating high-quality segmentations from minimal
prompts comparable to fully supervised models on stan-
dard datasets. [10]. These masks, while not manually
annotated, closely resembled true object extents across
several datasets (e.g., Pascal VOC, CUB-200), align-
ing with prior benchmarks showing SAM’s mIoU in the
70–90% range [10]. In fact, leveraging SAM has been
considered as a “big leap” in segmentation, showing
that a single model can adapt to segment almost any-
thing with the right prompt [10]. We treat these SAM-
generated masks as a proxy for ground truth to evaluate
our explainers.

To evaluate explanation maps, we compared SAM2
generated masks against ground truth using two metrics:
1. Coverage: how much of the SAM2 mask overlaps

with the explanation (i.e., recall of the explanation
w.r.t. the object).

2. Spill: how much of the explanation lies outside the
SAM2 mask (false positive rate).
Most popular explainers performed suboptimally by

both metrics. For instance, Grad-CAM achieved only
50–60% coverage on average for Pascal VOC, often
missing limbs or background objects, while LIME and
SHAP showed high spill (≥ 30% in many cases), fre-
quently activating irrelevant regions. Even the best indi-
vidual method, Score-CAM or a tuned Grad-CAM (with
aggressive thresholding to expand it slightly), left signif-
icant gaps.

Interestingly, when explanation maps were used as
prompts for SAM2, performance improved dramati-
cally. In other words, use the saliency map as an ini-
tial guess of foreground (and possibly background) for
SAM2, and let it generate a refined mask as shown in
fig. 3. Feeding SAM2 a fused, confidence-weighted
saliency map produced segmentation masks that rival the
quality of fully supervised models (e.g., 78.4% mIoU on
Pascal VOC, matching a supervised DeepLabV3 trained
with full annotations in Table 3). However, this suc-
cess hinged on SAM’s ability to correct and extend the
noisy cues— not the inherent quality of the explanation
maps themselves. Single-explainer prompts led to sig-
nificantly inferior masks, exposing their limitations as
standalone pseudo-labels. Figure 3 conceptually shows
such an example: a raw Grad-CAM vs. the SAM-refined



Table 3. Comparison of different methods w/o extra learnable
prompts (all on VOC test). The image-level labels (I) and use
of CLIP (C), Grounding DINO (D), and SAM (S) for train-
ing/inference are shown below. The † and ‡indicate backbone
pretrained on COCO ground-truth, or ImageNet-21k.

Method Backbone Supervision mIoU
CLIP-ES+VPLAAAI’25 ViT-B16 ✓ I + C 77.8
Yang & GongWACV’24 R-101 ✓ I + C + S 76.7
Yang & GongWACV’24 Swin-L‡ ✓ I + C + S 81.6
CLIP-ESCVPR’23 R-101† ✓ I + C 73.9
ToCOCVPR’23 ViT-B‡ × I 72.2
CLIMSCVPR’22 R-50† ✓ I + C 70.0
ViT-PCMECCV’22 R-101 × I 70.9
DeepLabV3+CVPR’18 R-101 Full Sup. 79.4
XAI-fused (Ours) R-50 × I + S 78.4

mask. Grad-CAM alone provides incomplete localiza-
tion; however, when used as input to SAM2, the result-
ing mask better captures the full object with fewer ex-
traneous bits. Essentially, SAM acts as a robust proxy
annotator, revealing the limitations of the original ex-
planation.

Instead of fine-tuning or prompt-learning for SAM2,
we adopt a zero-shot strategy: fusing diverse XAI
maps (Grad-CAM, IG, Score-CAM) with per-image
weights based on entropy, KL divergence, and IoU.
The fused cues guide SAM2 to generate fine-grained
masks—without extra training or external supervision.
Using a frozen ResNet-50 backbone, our pipeline
reaches 78.4 mIoU on VOC 2012, surpassing recent
SAM-based pipelines (e.g., CLIP- or DINO-trained
SAM pipelines [28]) and approaching fully supervised
models.

SAM2 thus serves as a proxy to reveal and refine the
limits of visual explanations. While single explainers
fall short of segmentation reliability, their confidence-
weighted fusion with SAM2 provides both semantic
guidance and structural refinement. Ablations confirm
that fusion improves mIoU by ≥ 5 points over the best
single-explainer, showing gains are not due to SAM2
alone.

5. Pitfalls of Using Explanations as Segmen-
tation Signals

The previous sections exposed how explanation maps
can be inconsistent and often misalign with true object
regions. We now examine the implications of using such
maps as pseudo-labels in WSSS. Despite their conve-
nience, this practice introduces several key pitfalls:

Seed Quality Limits Segmentation: In WSSS, the
quality of initial pseudo-labels (seeds) strongly influ-
ences the final performance. Saliency-based seeds that

cover only a part of the object or include irrelevant re-
gions can hinder the model’s ability to learn the full
object extent demonstrated in fig. 4. While methods
like CRFs, multi-view CAMs, or affinity propagation at-
tempt to expand these seeds, they can only work with
what the explanation provides. If crucial parts are en-
tirely missing, they remain unrecoverable. Empirically,
initial seed IoU correlates with final segmentation IoU—
better seeds yield better outcomes. Thus, the initial ex-
planation acts as a performance ceiling, raising the ques-
tion: should we improve the explainer or reconsider us-
ing it altogether?

Bias Propagation: Saliency maps can expose model
biases. If a classifier highlights background context
(e.g., water for boats), a segmentation model trained on
these cues may inherit and amplify such biases— label-
ing water as ’boat’ simply due to pseudo-label supervi-
sion. In effect, the explanation’s mistake becomes the
segmentation model’s mistake. This constitutes unfaith-
ful supervision, where the explainer’s focus misaligns
with the true object but is treated as ground truth. In
worst cases, the segmentation model may localize ob-
jects less accurately than the classifier itself.

Lack of Feedback During Training: WSSS of-
ten lacks ground truth to validate seed quality during
training. Consequently, models can overfit to flawed
pseudo-labels, leading to biased or incomplete segmen-
tation—issues that only surface at evaluation. A bet-
ter approach would involve confidence-aware losses or
mechanisms to assess explanation quality during train-
ing.

Over-Reliance on Heuristics: To address poor ex-
planation quality, WSSS pipelines frequently rely on
heuristics such as multi-threshold labeling, CRFs, ob-
jectness priors, or cross-image affinities. While ef-
fective, these increase complexity and require dataset-
specific tuning. With the rise of models like SAM, a
fundamental question arises: should explainers be used
as ground truth at all, or should alternative weak super-
vision signals—e.g., text descriptions, sparse user input,

Figure 4. Illustration of inter-explainer variation on the CUB-
200-2011 dataset. SAM2 outputs based on four different ex-
planation maps show clear disagreement, each offering a dis-
tinct interpretation. The fused map, combining cues from mul-
tiple explainers, yields compelling performance.



or pre-trained segmentation outputs be explored?
Misaligned Objectives – Interpretability vs. Seg-

mentation: Post-hoc explainers aim to justify a class
prediction, not delineate object boundaries. Classifiers
often rely on partial object cues (e.g., a cat’s face),
whereas segmentation demands full object coverage.
Forcing explainers to act as segmentation tools com-
promises their faithfulness and repurposes them beyond
their design. This inherent tension between faithfulness
and completeness has led some works to integrate spatial
constraints during classifier training, effectively blend-
ing classification with segmentation.

A fundamental tension arises when explanation maps
are used for supervision: should we constrain model de-
sign to make explanations usable, even at the cost of
task performance? Training a classifier with standard
cross-entropy and expecting its Grad-CAM to behave
like a segmentation mask is inherently misaligned—the
model was not optimized for that purpose. To obtain
more useful explanations, the classifier itself may need
to be modified for interpretability, potentially sacrificing
predictive performance.

For instance, a saliency map highlighting only a
bird’s belly in fig. 4 is faithful to the classifier’s reason-
ing but insufficient as a full-object supervision cue. En-
hancing its utility—e.g., by introducing losses that pro-
mote spatial coverage or objectness—may produce bet-
ter segmentation signals but alters the classifier’s inter-
nal reasoning. This compromises the original notion of
explanation fidelity and blurs the line between interpret-
ing a model and engineering it to be explainable. We ar-
gue that the community must more clearly acknowledge
this disconnect: explanations that are good for human
interpretation or model debugging are not necessarily
suitable for supervision.

In summary, using explanation maps as supervision
born out of necessity (lack of labels) can:
• Limit segmentation quality due to incomplete or noisy

seeds,
• Inherit and propagate classifier biases,
• Obscure performance evaluation during training, and
• Require heavy reliance on heuristics.

These pitfalls underscore the fragility of post-hoc
maps when used as training signals. Explanations are
valuable for auditing a classifier; they become brittle as
supervision. Our recipe treats them as assistance with
explicit quality checks, not as labels. Future directions
may focus on either developing explainers that are both
faithful and complete or shifting toward alternative weak
supervision paradigms that better align with the task.
The next section explores how to rethink evaluation and
trust in this setting, and outlines potential directions for
progress.

6. Interpretability vs. Utility: The Segmen-
tation Gap

A key tension lies in the gap between interpretabil-
ity—how well an explanation reflects model reasoning,
and utility-its effectiveness as supervision for segmenta-
tion. An explanation may be faithful to the model yet
fail to capture the full object, or conversely cover the
object but not reflect true decision cues.

Most XAI methods are judged by fidelity or stability,
but if used for segmentation, spatial accuracy becomes
essential. Poor overlap with object regions signals ei-
ther a flawed explainer or a faithful revelation of biased
model reasoning. Thus, segmentation quality itself can
serve as a diagnostic for explanation quality. Addressing
this requires task-specific notions of faithfulness, em-
phasizing semantic and spatial alignment. Such align-
ment might call for concept-based explanations or con-
strained explanation spaces, where saliency is guided to
align with high-level object concepts rather than arbi-
trary features. While promising, these approaches re-
main underexplored in the WSSS context.
Hybrid approaches. Saliency maps may be optimized
jointly for interpretability and completeness, e.g., by
regularizing attention maps with objectness priors or
foundation model outputs. Such dual objectives trade
some accuracy for more transparent and reliable super-
vision. This is a conscious design trade-off—restricting
a model from using spurious shortcuts to gain inter-
pretability and supervision value. While it may reduce
raw accuracy, it promotes transparency and downstream
reliability.

This leads to a key proposition: Visual explanations
should not be used as training signals without validation.
Confidence metrics, explainer fusion, or agreement with
trusted oracles like SAM can help ensure only reliable
cues guide segmentation.
Rethinking Faithfulness and Consistency. Bridging
the interpretability–utility gap requires new criteria for
explanation quality, such as:
• Fusion-based confidence (e.g., entropy or inter-

method agreement),
• Robustness benchmarking (e.g., sensitivity to noise),
• Contextualized faithfulness, where explanations align

with semantic object concepts, not only model predic-
tions.
A practical framework is to treat saliency maps as

pseudo-annotators: applying refinements (e.g., Grab-
Cut [14], random walks [13]) and measuring whether
they yield usable segmentations. Strong segmentations
suggest meaningful signals, providing a task-driven
benchmark of utility.
Implications of Foundation Models. Foundation mod-
els like SAM reduce reliance on saliency cues by pro-



ducing masks from minimal prompts, yet explaining
their behavior remains open. Outputs vary by prompt
and region, and new interpretation tools are needed.
Progress will require collaboration between XAI and vi-
sion communities—developing evaluation pipelines that
account for downstream utility and supervision strate-
gies that respect explainability constraints. Such co-
design is vital for models that are both accurate and in-
terpretable.

7. Conclusion and Future Directions

We examined the role of post-hoc visual explanations
in weakly supervised semantic segmentation (WSSS)
and showed that common methods—Grad-CAM, Score-
CAM, IG, LIME, SHAP—often lack the consistency,
completeness, and alignment needed for reliable super-
vision. Using SAM2 as a proxy, we demonstrated that
these maps frequently cover only partial object regions
and disagree with each other and with the true object
extent.

While fusion and foundation models can mitigate
some shortcomings, explanation maps should not be as-
sumed suitable for training without validation. Seg-
mentation requires pixel-level accuracy, whereas ex-
plainers are designed primarily for interpretability. We
therefore argue for principled use: incorporating qual-
ity checks, iterative refinement, or models that integrate
interpretability and segmentation from the outset.

This critique raises key questions for the community:
• Can visual explanations serve beyond inspection and

debugging, or should alternative weak cues (e.g.,
clicks, text, foundation masks) replace them?

• How can we improve faithfulness and stability of
saliency maps? Could architectural constraints, multi-
task learning, or dedicated loss functions produce
more complete, stable, and human-aligned saliency
maps?

• Should segmentation utility influence how explanation
methods are ranked?

• What role will foundation models play, and how can
their transparency be ensured?
Addressing these questions will require closer col-

laboration between the XAI, human-computer interac-
tion and vision communities. While visual explana-
tions have advanced WSSS, they must be employed
with skepticism and proper validation. Emerging ap-
proaches—such as explainer fusion, entropy-based trust
estimation, and SAM-guided refinement offer a promis-
ing starting point for future research. Until interpretable
representations are native to models, explanation maps
must be treated with caution—validated, selectively ap-
plied, and continually improved.

Future Research Directions: Future work will stress-
test the framework in domains such as medical imaging
and endoscopy, where distribution shifts challenge both
the proxy oracle and the explainers. To bridge the inter-
pretability–utility gap, we highlight five avenues:
1. Benchmarking: Standardize localization metrics

(IoU, pointing game) across datasets like Pascal VOC
and COCO.

2. Multi-Explainer Fusion: Replace heuristic fusion
with neural or graph-based models that learn consen-
sus maps.

3. Trust Estimation: Identify reliable regions via en-
tropy, agreement, or robustness probes.

4. Human-in-the-Loop: Use lightweight user correc-
tions with SAM to refine explanation-based supervi-
sion.

5. Explaining FMs: Develop tools to interpret
segmentation-focused foundation models such as
SAM. Understanding their internal decision-making
will be crucial for safe and effective use in weakly
supervised or semi-supervised pipelines.

In closing, explanations should support trust, not replace
it. Overreliance on unvalidated maps risks both inter-
pretability and performance. By ensuring explanations
are faithful, consistent, and task-aligned, we can ad-
vance segmentation systems that are accurate and mean-
ingfully transparent.
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Roman Rädle, Chloe Rolland, Laura Gustafson, et al.
Sam 2: Segment anything in images and videos. arXiv
preprint arXiv:2408.00714, 2024. 2, 5

[21] Ayush Somani, Ludwig Alexander Horsch, Ajit Bopar-
dikar, and Dilip Kumar Prasad. Propagating trans-
parency: A deep dive into the interpretability of neural
networks. 2024. 1, 2

[22] Felix Tempel, Daniel Groos, Espen Alexander F Ihlen,
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