

# Rethinking Explainer Trust: A Position on the Inconsistencies of Visual Explanations in Weakly Supervised Segmentation

Dilip K. Prasad Ayush Somani

Department of Computer Science, UiT The Arctic University of Norway



Paper ID: eXCV-12

Attribution ≠ segmentation. Saliency maps highlight decision evidence, not object extent—treat them as validated cues.

### POSITION -> WHY IT MATTERS

Post-hoc maps explain decision basis, not object extent—repurposing them as WSSS labels is **fragile by design**. We advocate a **diagnose-then-assist** protocol.

Rephrase principle: "Not an issue with explainers; an issue with using them as masks".

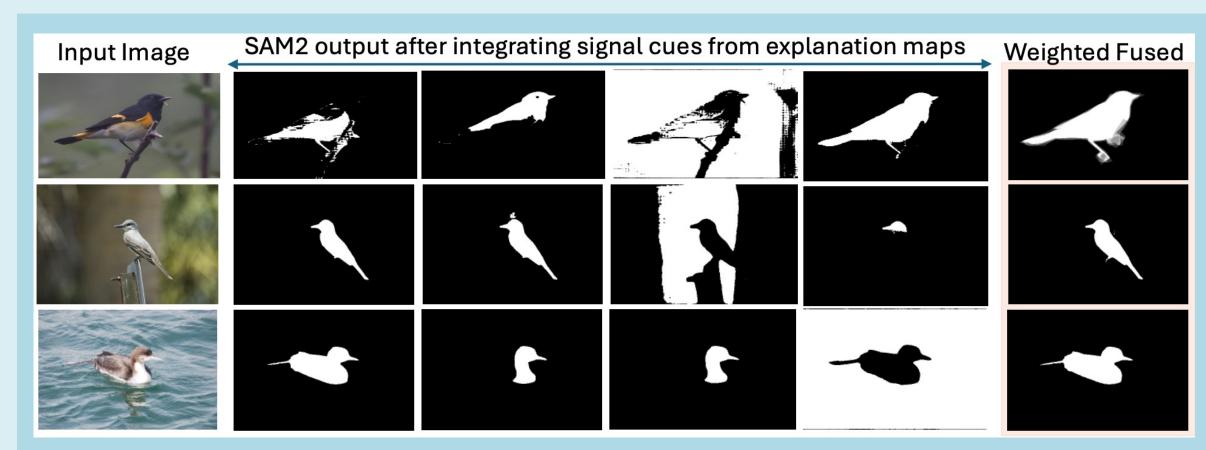


Figure 1. Misalignment between explanation cues: example heatmap vs. SAM2 proxy mask using prompt signal cues from various explanation techniques.

### - MOTIVATION -

#### What's a property (not a bug)

- Discriminative focus (small, decisive regions) → good for interpretability, insufficient for full masks.
- Spurious/Context cues → valuable for debugging, dangerous as labels.
- **Method disagreement** → expected from different priors; requires agreement checks, not cherry-picking.

#### ❖ Related work (acknowledging the field)

- Evaluation/benchmarks of XAI (e.g., OpenXAI, Quantus, CLEVR-XAI, medical saliency audits).
- Alignment/robustness of explanations; human-in-the-loop weak supervision; explaining foundation models.

#### **DATASETS PANEL**

| <b>.</b> | Dataset            | #Classes  | #Images | Domain                      |  |
|----------|--------------------|-----------|---------|-----------------------------|--|
|          | CUB-200-2011       | 200       | 11,788  | Bird species (fine-grained) |  |
|          | Pascal VOC2012     | 20        | 1,450   | General objects (natural)   |  |
|          | USIS10K            | 7         | 10,632  | Underwater scene (natural)  |  |
|          | Sessile-Kvasir-SEG | 1 (polyp) | 1,000   | Gastroenterology (medical)  |  |

# EVIDENCE SNAPSHOT → PRACTICAL PROTOCOL ———

Gradient- and Attribution-based Explanation Methods

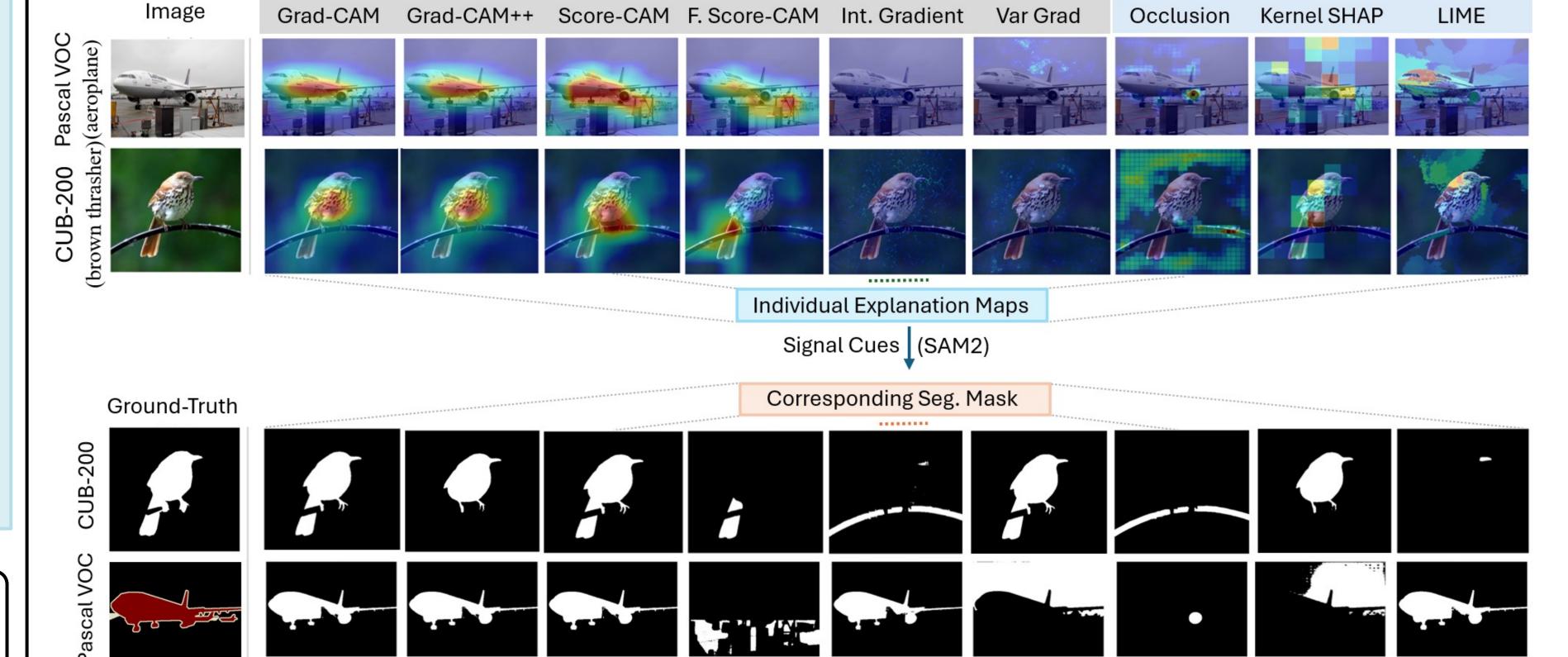


Figure 2. Illustration of misalignment. Top: class-conditioned heatmaps overlayed for the "aeroplane" (Pascal VOC) and "brown thrasher" (CUB-200-2011); Bottom: proxy masks from SAM2 prompted by respective explanation cues; low pairwise overlap exposes unreliability for supervision.

#### **\* Metrics:**

- Coverage:  $|M \cap GT|/|GT|$  on maps thresholded to binary support.
- Spill:  $|M\backslash GT|/|M|$  on explanation maps.
- Localization Accuracy (LA): pointing-game hit rate (max map point  $\in$  GT).
- mIoU: mean IoU of final masks (after SAM prompting).
- Effectiveness/Fidelity: confidence drop when masking the attributed region.

#### What we observe (concise)

• Coverage is often partial; Spill to background is common.

Perturbation-based Explanation Methods

- Low inter-explainer overlap on the same image.
- Directly thresholding maps → unstable masks.

**Flow:**  $E_k \rightarrow$  reliability weights  $\rightarrow$  fused map  $\rightarrow$  dual cues (FG/BG)  $\rightarrow$  SAM2 prompt  $\rightarrow$  mask.

### How we safely use attribution (FM-assisted protocol):

- Many maps  $E_k$ : per-image from diverse explainers (Grad-CAM, Grad-CAM++, Score-CAM, IG, etc.).
- 2. Per-image reliability  $w_k$ : prefer consensus (IoU agreement), focused (low entropy), and robust (stable under  $\Delta$  perturbations).
- 3. **Dual cues**: Fuse  $E_{\Sigma} = \sum w_k E_k$ ; top-percentile  $\rightarrow$  foreground points P, bottom-percentile  $\rightarrow$  background points B.
- **Prompt a segmenter** (e.g., SAM2) with  $(P,B) \rightarrow$  refined mask  $\widehat{M}$  (no learnable prompts).
- 5. Report separately: Interpretability (Coverage/Spill, pointing game) v/s. Utility (mIoU, LA).

**Ablate:** single map vs. mean vs. confidence-weighted; with/without BG seeds; SAM-only vs. XAI→SAM.

### —RECOMMENDATIONS → DEBATE → SCOPE —

#### Recommendations (checklist for the community)

- Do not supervise with a single explainer; quantify agreement first.
- Prefer confidence-weighted fusion + dual cues over naïve thresholding/averaging.
- Declare FM-assisted scope (SAM2 prior) explicitly.

#### **Interpretability** ↔ **Utility**: the gap

Fidelity ≠ spatial completeness. Use segmentation quality as a **diagnostic** for explainer quality and pursue task-aware faithfulness (concept-aligned, robust).

|                                                                 | Grad-CAM                | Fast; stable; decent fidelity                      | Partial object coverage; coarse                             | 0.70 / 0.84 / <b>0.96</b> | 0.70 / 0.78 / 0.94        | 0.55 / 0.54 / 0.89               |
|-----------------------------------------------------------------|-------------------------|----------------------------------------------------|-------------------------------------------------------------|---------------------------|---------------------------|----------------------------------|
|                                                                 | Grad-CAM++              | Improved coverage for multiple objects             | Still coarse; depends on conv. features                     | 0.72 / 0.87 / 0.95        | 0.71 / 0.74 / <b>0.95</b> | <b>0.74</b> / 0.48 / <b>0.92</b> |
|                                                                 | Score-CAM               | Sharp maps; high fidelity                          | Slow; Expensive; sensitive to masks                         | 0.56 / 0.72 / 0.92        | 0.65 / 0.70 / 0.94        | 0.52 / 0.56 / 0.88               |
|                                                                 | FasterScore-<br>CAM     | 10× faster than<br>Score-CAM                       | Skips minor features;<br>still costly                       | 0.49 / 0.59 / 0.94        | 0.64 / 0.72 / 0.92        | 0.54 / 0.59 / 0.85               |
|                                                                 | Integrated<br>Gradients | Pixel-level detail;<br>theoretical<br>completeness | Noisy attributions;<br>multiple steps;<br>gradient dilution | 0.66 / 0.81 / 0.81        | 0.55 / 0.64 / 0.78        | 0.57 / <b>0.61</b> / 0.78        |
| Table 2. Comparison of                                          | VarGrad                 | Stability via averaging gradients                  | Oversmoothing; sampling cost                                | 0.40 / 0.44 / 0.62        | 0.40 / 0.62 / 0.60        | 0.42 / 0.46 / 0.76               |
| explanation <i>methods</i> —<br>key <i>characteristics, and</i> | Occlusion               | Causal;<br>model-agnostic                          | Slow; coarse heatmaps                                       | 0.48 / 0.71 / 0.65        | 0.44 / <b>0.81</b> / 0.80 | 0.66 / 0.50 / 0.87               |
| GT-mask alignment                                               | KernelSHAP              | Fair, model-agnostic, local                        | Heavy sampling;<br>blocky maps                              | 0.31 / 0.46 / 0.82        | 0.40 / 0.68 / 0.78        | 0.29 / 0.44 / 0.90               |
| (ResNet-50): mIoU ↑,                                            | LIME                    | Broad part coverage; interpretable                 | blocky; heavy sampling; low fidelity                        | 0.48 / 0.72 / 0.86        | 0.46 / 0.50 / 0.75        | 0.42 / 0.55 / 0.88               |
| Effectiveness ↑,<br>Localization Accuracy ↑.                    | Fused-<br>Weighted      | Consistent; high utility                           | Requires fusion, added complexity                           | 0.77 / 0.91 / 0.96        | <b>0.78 / 0.81 /</b> 0.84 | 0.55 / 0.60 / <b>0.92</b>        |

# \_TAKEAWAY \_

- ✓ Coverage & Spill vs. SAM2 proxy show common failures: Grad-CAM ~50–60% coverage on VOC; LIME/SHAP ≥30% spill.
- ✓ Maps as prompts to SAM2 dramatically improves masks; cues reach ~78.4% mIoU on VOC test, rivalling fully supervised DeepLabV3—but success comes from SAM's correction, not from raw maps.
- ✓ Don't supervise with single explainers. Validate agreement, separate metrics, and—when needed use explainers as guidance with transparent caveats about foundation-model priors.
- Explanations should support trust, not replace it. Raw saliency is insufficient for full masks. Assisted (XAI -> dual-cues -> SAM), masks improve because of the segmenter prior, not because maps "become" masks.

## **ACKNOWLEDGEMENT** —

This work was supported by the Research Council of Norway Project (nanoAI, Project ID: 325741).