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Abstract

We introduce Semantic Resonance Maps (SRMs), a novel
approach to explainable Al that leverages the natural os-
cillatory dynamics between vision and language modalities
in foundation models. Unlike traditional attribution meth-
ods that provide static heatmaps, SRMs capture the iterative
refinement process that occurs when visual and textual rep-
resentations interact, revealing how models progressively
align cross-modal understanding. Our method exploits the
phenomenon of “semantic resonance” — the amplification
of relevant features through recursive cross-modal atten-
tion cycles. We demonstrate that these resonance patterns
not only provide more faithful explanations than gradient-
based methods but also uncover latent conceptual hierar-
chies that emerge during model inference. Preliminary ex-
periments on vision-language models show that SRMs can
identify compositional reasoning pathways and detect when
models rely on spurious correlations versus genuine seman-
tic understanding.

1. Introduction

The interpretability of vision-language models remains a
critical challenge as these systems become increasingly
integrated into high-stakes applications. While existing
XAI methods for computer vision have made significant
progress in generating attribution maps [!], understanding
feature importance [2], and producing counterfactual expla-
nations [3], they often fail to capture the complex interplay
between visual and linguistic modalities that characterizes
modern foundation models.

We propose a fundamentally different approach: instead
of analyzing static model outputs, we examine the dynamic
resonance patterns that emerge when vision and language
representations iteratively refine each other. This resonance
phenomenon, which we term ‘“semantic resonance,” oc-
curs when cross-modal attention mechanisms create feed-
back loops that progressively amplify task-relevant features

while suppressing noise.
Our key insight is that these oscillatory patterns encode
rich explanatory information about model behavior. By an-
alyzing the frequency, amplitude, and phase relationships of
semantic resonance, we can:
¢ Identify which visual regions and text tokens exhibit
strongest cross-modal coupling

* Detect when models engage in compositional reasoning
versus pattern matching

* Reveal the temporal evolution of model understanding
during inference

* Distinguish between spurious and causal feature depen-
dencies

2. Method

2.1. Semantic Resonance Framework

Let V. € RH*XWxdv represent visual features and T €
RE*4¢ represent textual embeddings, where H, W are spa-
tial dimensions, L is sequence length, and d,, d; are em-
bedding dimensions.

We define the cross-modal interaction operator ¢ as:

O(V,T) = o(VW,) ® o(TW,)" (1)

where W,,, W, are learned projection matrices and ® de-
notes the cross-modal attention operation.

The semantic resonance map R(*) at iteration ¢ is com-
puted through recursive application:

RV =a.- a(VORY T)+(1-a) - RY (2

where « is a resonance coefficient and © represents
element-wise multiplication.

2.2. Oscillation Analysis

To extract interpretable patterns, we perform spectral de-
composition of the resonance trajectory:

K
R® = Z Ay, cos(wrt + ¢r) U, 3)
k=1
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where Ay, wy, ¢ are amplitude, frequency, and phase of
the k-th resonance mode, and Uy, are spatial eigenmodes.

The dominant resonance frequency w* indicates the rate
of cross-modal information exchange, while the spatial dis-
tribution of high-amplitude modes reveals which image re-
gions most strongly couple with textual concepts.

2.3. Conceptual Hierarchy Discovery

We hypothesize that different resonance frequencies cor-
respond to different levels of semantic abstraction. Low-
frequency modes capture global scene understanding, while
high-frequency oscillations encode fine-grained details.

To validate this, we introduce a hierarchy extraction al-
gorithm:

Algorithm 1 Hierarchical Concept Extraction

1: Input: Resonance map sequence {R("}7_,

2: Output: Concept hierarchy H

3: Compute FFT: R(w) = F{R®}

4: for each frequency band w; do

5: Extract spatial patterns P; = |R(w;)|

6:  Cluster patterns into concepts C;

7:  Add C; to hierarchy level ¢

8: end for

9: Link concepts across levels via mutual information
10: return H

3. Preliminary Experiments

3.1. Experimental Setup

We evaluate SRMs on CLIP-based models using three

datasets:

* COCO-Attributes: For compositional understanding

* Winoground: For cross-modal reasoning

* SVO-Probes: For subject-verb-object decomposition
We compare against GradCAM, integrated gradients,

and SHAP-based explanations using faithfulness metrics

and human evaluation.

3.2. Qualitative Analysis

Figure 1 illustrates semantic resonance maps for the prompt

“a dog jumping over a fence.” The resonance patterns reveal

three distinct phases:

1. Initial coupling (t=0-5): Broad activation across dog
and fence regions

2. Relational focusing (t=5-15): Oscillations concentrate
on the spatial relationship

3. Semantic lock-in (t=15-20):
action-relevant features

Stable resonance on

Figure 1. Visualization of cross-modal oscillations for the prompt
”a dog jumping over a fence” across three phases: (a) Initial cou-
pling (t=0-5): Broad activation across object regions, (b) Rela-
tional focusing (t=5-15): Oscillations concentrate on spatial re-
lationships, (c) Semantic lock-in (t=15-20): Stable resonance on
action-relevant features. Warmer colors indicate stronger reso-
nance amplitude. The bottom row shows frequency decomposi-
tion.

Table 1. Faithfulness metrics comparing explanation methods

Method Deletion AUC 1 Insertion AUC 1
GradCAM 0.72 0.68
Integrated Gradients 0.75 0.71
SHAP 0.74 0.70
SRM (Ours) 0.81 0.78

3.3. Quantitative Results

Initial results (Table 1) suggest that resonance-based expla-
nations better capture model decision boundaries. The im-
provement is particularly pronounced for complex compo-
sitional queries requiring multi-step reasoning.

4. Discussion and Future Work

4.1. Theoretical Implications

The existence of semantic resonance suggests that vision-
language models may implement a form of iterative evi-
dence accumulation analogous to predictive coding in neu-
roscience. This connection opens intriguing possibilities for
bio-inspired interpretability methods.

4.2. Limitations and Open Questions

Several challenges remain:

¢ Computational cost: Computing full resonance trajecto-
ries requires multiple forward passes

¢ Hyperparameter sensitivity: The resonance coefficient
« significantly affects patterns

* Generalization: Whether resonance occurs in all archi-
tectures remains unclear

4.3. Future Directions

We envision several extensions:
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1. Causal resonance: Using interventions to establish
causal relationships between oscillation patterns and
model outputs

2. Adversarial resonance: Crafting inputs that induce de-
structive interference

3. Resonance-guided training: Using resonance patterns
as regularization signals

5. Conclusion

Semantic Resonance Maps represent a novel paradigm for
understanding vision-language models through the lens of
dynamical systems. By analyzing cross-modal oscillations,
we can uncover rich explanatory structures that static meth-
ods miss. While this early-stage work has limitations, it
opens promising avenues for mechanistic interpretability in
multimodal AL

Our preliminary results suggest that the resonance
framework could provide a unified approach to several XAl
challenges, from attribution to concept discovery. We hope
this work stimulates further research into dynamic, cross-
modal explanation methods.
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