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Motivation

e There 1s no reliable method for accurately identifying what exact input
patches ViTs are attending to.

e There 1s no causal relation between attention maps and the predictions.

e ViTs often require extra registers for a human-desired explanation.

® There are many heads and layers in ViTs. Thus, 1t 1s not trivial to
accurately assign credit to each and to perform intervention for
prediction verification.
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Image Difference Captioning

e IDC 1s a core task behind many real-world applications, e.g., remote
sensing, camera surveillance, medical imaging, and urban planning.

e Detecting differences 1s also an 1mportant aspect of many
self-supervised methods, €.g., SImCLR.

® Sctup:
o Inputs: (Image A, Image B)
o QOutput: A natural language description of potentlal object-level

changes ' ’

Output: The giraffe has been newly appeared
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CLIP4IDC: the small gray matte cylinder
that 1s behind the small red matte object
changed its location X

(g) MHSA attention maps

CLIP4IDC: the small gray matte cylinder that is
behind the small red matte object changed its

location 2% / /
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- (j) Zeroed TAB attention maps
TABA4IDC: there is no change vV
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‘Guiding VLMs to look by highlighting attention patches
in MHSA attention maps does not cause CLIP4IDC:

(f) No-Change images (h) TAB attention maps

G'T: there is no change TAB4IDC: the tiny gray matte cylinder output to change. However, intervention on the TAB:
that is behind the big ;d metal object is bottleneck causes TAB4IDC output to change to an:
gone !

iexpected caption.
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' The attention maps in TAB can localize !
multiple  changes in  real-world:

J4&7% isurveillance datasets. Yet, the Valuesi
ispread over the patches, including the:
/' ichanged objects, which leads to loweri
| iattention values. '
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attention for IDC.

e TAB ecnables an interactive interface allows users to intervene in
decision-making, by which one can correct and audit VLMSs’
decisions.

e Users can use TAB to evaluate how the attended patches in an
attention map are important to VLM predictions.



