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Abstract

We introduce an information-geometric framework for un-
derstanding class robustness of deep vision classifier mod-
els, leveraging the manifold structure of a classifier’s pre-
dictive distribution. Our approach quantifies class robust-
ness using Fisher-Rao (FR) Margins, which measure the
distance from an input to it’s decision boundaries minimiz-
ing a given loss function. Furthermore, this reveals class
shielding effects, where unintended intermediate classes im-
pede transitions between source and target classes, offer-
ing insights into model vulnerabilities. We hypothesize that
classes deemed “robust” often exhibit high shielding fre-
quency, suggesting apparent robustness can stem from large
input-volume mapping rather than a faithful understand-
ing of the decision boundary. We perform experiments on
CIFAR-10 test images to understand the geometry of the
pre-trained classifier; including class transitions, shielding
phenomena, and differential class stability.

1. Introduction

Deep neural networks have achieved remarkable perfor-
mance on a wide range of computer vision tasks, but
their black-box nature motivates continuing work on inter-
pretability and trustworthy decision making (XAI) [16]. A
large body of work in explainable vision focuses on feature-
level attributions—saliency maps [30], Integrated Gradi-
ents [32], and class activation map variants such as Grad-
CAM [29], Grad-CAM++ [7], Ablation-CAM [11], Score-
CAM [36], LayerCAM [15], Eigen-CAM [4], and KPCA-
CAM [18]. While these methods illuminate which image
regions drive predictions, they often treat the model’s out-
put only through local, feature-centric lenses and can over-
look shifts in the entire predictive distribution that underlie
robustness failures [10, 34].

Adversarial vulnerability has exposed precisely this gap:
imperceptible input perturbations can induce large, system-
atic changes in predicted probabilities and cause misclas-
sification [13, 25, 33]. Both white-box attacks that ex-
ploit gradient information (e.g., FGSM, BIM, PGD, Car-
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lini-Wagner) and black-box strategies that rely on transfer-
ability or query-based gradient estimation demonstrate that
robustness must be considered at the level of the model’s
predictive distribution and decision boundaries [2, 6, 13, 20,
22, 27]. Attempts to defend by masking gradients or ad-hoc
preprocessing have in turn been shown vulnerable to adap-
tive attacks, motivating principled defenses such as adver-
sarial training and certification via randomized smoothing
or convex relaxations [3, 9, 22, 39].

A key limitation of many robustness analyses is their re-
liance on Euclidean or pixel-space distances (e.g., classi-
cal ¢5 / {5, norms used in DeepFool and other attacks) to
measure perturbation size and proximity to decision bound-
aries [13, 25]. Such distances do not respect the intrinsic,
nonlinear geometry induced by a classifier’s predictive dis-
tribution. Information geometry equips the space of model
outputs with the Fisher Information Matrix as a Rieman-
nian metric, one measures meaningful (locally parameter-
invariant) distances on the statistical manifold of predictive
distributions [1, 26]. Prior work has explored Fisher-based
attacks (e.g., OSSA) but has typically considered single-
step or localized perturbations rather than complete geomet-
ric paths [40].

In this paper we propose a framework that quantifies ro-
bustness by measuring Fisher—Rao margins: distances on
the statistical manifold induced by the model’s predictive
distribution that indicate how far an input must move (in
information-geometric terms) before the classifier’s deci-
sion changes toward a target class. The natural gradient
is the steepest-descent direction for a loss when distances
between parameter values are measured by the local KL
(Fisher) metric, i.e. it minimizes the first-order change
in the loss subject to a fixed infinitesimal KL constraint
(local quadratic approximation). Unlike purely Euclidean
measures, FR margins reflect the intrinsic distortion of the
predictive distribution and therefore emphasize perturba-
tions that meaningfully alter the model’s probabilistic be-
liefs [14, 38].

Our approach differs from other information-theoretic or
distributional XAl techniques (e.g., Information-Bottleneck
saliency [41], mutual-information based attributions [12],



and virtual adversarial training [24]) since we explicitly use

an information geometric view of predictive distributions.

We also position our work with respect to distributional ro-

bustness and certification literature [9, 31] and to Shapley-

value style explanations adapted for vision [5, 21, 28].

We summarize our contributions below:

* We introduce an information-geometric framework to
quantify model robustness for deep vision classifiers via
FR margins, computed efficiently by following normal-
ized natural-gradient trajectories on the statistical man-
ifold and identifying boundary points that induce class
transitions.

* We empirically demonstrate class shielding effects, show-
ing how intermediate classes can block direct paths and
thereby influence adversarial transition patterns.

* We validate our framework on CIFAR-10 test images
to understand class stability with implications for robust
model design.

2. Fisher-Rao Margins

The Fisher Information Matrix (FIM) at an input point x is
central to this framework. It precisely quantifies how sensi-
tively the model’s output probability distribution p(y|x;6)
reacts to infinitesimal input perturbations, thereby defining
a Riemannian metric on the input space R? [1, 26]. For-
mally, for a model with fixed weights 6, the FIM Gy is
given by:

Gx = Eyjx;0[(Vx log p(y[x; 0))(Vx log p(y|x; 6)) 7]

For classification, where p.(x; ) is the probability of class
cand J(y,x;0) = —log p(y|x; 8), the FIM is explicitly:

C
Gx = D pe(x;0) [V (¢,%: 0)] [V (¢, %:0)] T

c=1

This FIM is distinct from parameter-focused formulations
in [24], and acts as a local metric tensor on the statisti-
cal manifold of model outputs. It avoids distortions often
seen with the empirical Fisher approximation [19]. Geo-
metrically, if z = f(x;0) is the softmax output, G is the
Riemannian metric induced from the FIM G, in the prob-
ability space [26]: 0" Gxn = 1" J[ G, fn, where J is
the Jacobian. This implies that the geodesic distance in the
lower-dimensional probability space is no larger than in the
high-dimensional input space, extending the excessive lin-
earity explanation [13] to networks with smooth activations
[8].

Using the FIM, we extend Euclidean robustness met-
rics like DeepFool [25] to the information-geometric set-
ting. The infinitesimal Fisher-Rao distance ds is defined by
(ds)? = dx " Gydx. For a path y(t), the total Fisher-Rao

distance is:

1
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The Fisher-Rao margin for input x with true label y can then
be approximated as:

margin(x,y) = min{Drg(x,x’) | arg maxp.(x;0) # y}.

This provides a robust, sample-specific measure of robust-
ness that accounts for the model’s sensitivity in its output
distribution.

As exact margin computation is NP-hard [31] and explic-
itly requires solving the geodesic boundary-value problem,
we employ an iterative procedure based on natural gradient
descent [ 1] to approximate these margins. For a target class
k, we seek x” where Lj(x) = logpy(x;6) — log pi(x;6)
becomes zero. Starting from xy, we compute the natural
gradient direction vy, by solving

(ch. + )\I)Uk = Vka(X)

using CG [23]. The AI term ensures numerical stability
for potentially ill-conditioned FIMs [19]. The step mag-
nitude is « = +/g vy and we take a unit Fisher-length
step 0 = wvi/a. We accumulate o which is interpretable
as cumulative linearized logit change. In the continuous,
exact-solve limit, this equals the total change in the logit-
difference L from start to boundary and therefore is a nat-
ural and consistent proxy for the required logit change to
reach misclassification.

A particularly insightful aspect revealed by this iterative
procedure is class shielding. As we navigate the mani-
fold from a source class towards a target class k, the path
may unexpectedly first encounter the decision boundary of
an intermediate, unintended class j # k. This provides
us the direct empirical evidence of the complex structure
of the model’s decision landscape. While the concept of
boundaries under the Fisher metric has been explored in
single step adversarial attacks like OSSA [40], our method
uniquely reveals these intermediate class interactions using
iterative procedures.

Direct FIM computation and inversion are prohibitive for
high-dimensional inputs (d > 10%). We instead compute
the FIM-vector product Gyxn = By x0[(g, 1)g,] efficiently
via Monte Carlo sampling from p(y|x;6) using the alias
method [37], typically with C'/5 samples.

The an approximation of overall Fisher-Rao margin for
an individual input x is the minimum of dj, across all pos-
sible target classes k # yo. By aggregating these mar-
gins across numerous samples within each class, our frame-
work enables the quantitative evaluation of class robustness,
identifying which classes exhibit larger (more resilient)
or smaller (more vulnerable) average Fisher-Rao margins.



This provides a powerful, quantitative metric for assessing
differential robustness across the entire spectrum of classes
learned by the deep vision model, aligning with recent work
on class-level analysis in continual learning contexts [35].

Algorithm 1 Iterative Fisher-Rao Margin Computation

Require: Model p(y | -), initial input xg, current predicted
label vy, target class k
Ensure: Approximate margin dy, boundary point x}, (for
target k)
di + 0, Xeur ¢ Xo
Li(x) = log py, (x;6) — log pr(x;0)
while arg max; p; (Xcur; 0) = yo do
g+ Vi Li(x) at Xeyr
G(n) = Eyjx..,:0((g M9y]
Solve (G + M )v = g for v via CG
a++/glv
d+—v/a
Xeur & Xeur + o
10: dp <+ di + «
11: end while
12: return dy, Xcyr
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3. Experiments

We empirically study FR margins and the shielding phe-
nomena that arise when following natural gradient trajecto-
ries on a pretrained image classifier. For each input image
X0 whose prediction is yg, we run Algorithm | toward every
target class k. For every attempted path (a single (xo, y, k)
run) we store the cumulative linearized change in the logit
difference at the endpoint and the terminal predicted class.
From the full corpus we extracted and analysed the subset
of 800 image runs in which the model’s prediction changed,
yielding N = 3,659 changed-path records spanning the ten
classes.

We first study the path matrix Figure | which gives us an
overview of individual class robustness. This gives us an in-
sight that suggests classes containing animals and birds are
the most vulnerable. A possible reason is their relatively
smaller size, which makes the model’s predictions reliable
only in close-up images. In contrast, larger objects such as
trucks, airplanes, automobiles, ships, and horses can still
be identified accurately even from distant images. Notable
cross-class transitions include dog—-cat, and cat—frog and
airplane—bird and bird—airplane, revealing specific adver-
sarial vulnerabilities, hence we study them differently.

We study the FR distances of the paths which change
prediction in Figure 2 which reveal that vulnerable classes
require smaller fisher distances for successful attacks. This
observation is in tandem with [25, 40] who show that such
classes require smaller Euclidean perturbations.

We now study the shielding effects for both the cases,
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Figure 1. Path matrix showing the percentage of FR paths from
each source class (rows) to final predicted class (columns). Val-
ues represent the proportion of paths that end up predicting each
class when starting from a given source. Diagonal elements indi-
cate self-prediction robustness. Most robust classes (highest self-
prediction): ship, truck, airplane, automobile, and horse. Most
vulnerable classes (lowest self-prediction): frog, dog, cat, and
bird, which are more likely to transition to other classes.

when we try to find a path from the low vulnerability class to
a high vulnerability class and vice versa. Figure 3 shows the
boxplots of the FR margins of the top 3 frequent shielding
classes the for every source-target pair. The shielding anal-
ysis reveals that specific classes dominate as barriers. The
class truck emerges as the most effective shielding class,
demonstrating a 92% shielding frequency, followed closely
by ship with 88% frequency and airplane with 72% fre-
quency. The analysis shows that low vulnerability classes
(truck, ship, airplane) serve as the most reliable shields,
with several source-target combinations achieving 100%
shielding ratios - including airplane—deer, airplane—dog,
ship—dog, and truck—dog. This is an interesting as well as
crucial finding, implying that a large volume of the input re-
gion of the model predicts into one of the low vulnerability
classes.

These measurements support two structural hypothesis
about the classifier’s decision boundaries. First, attempts
to follow natural-gradient trajectories toward a particular
target often terminate in an shielded class and the classes
which appear as shields are often the low vulnerability
classes. Hence, apparent robustness at the class level can
arise for different reasons. A class that exhibits low mea-
sured vulnerability may do so because the model accurately



Figure 2. Analysis of Fisher-Rao distances for successful ad-
versarial attacks (changed predictions only) across CIFAR-10
classes. (a) Distribution comparison showing that high vulnerabil-
ity classes (yellow) require significantly smaller Fisher-Rao dis-
tances than low vulnerability classes (blue) for successful class
transitions. (b) Box plots by individual class, revealing that high
vulnerability classes (bird, dog, frog, cat, deer) have significantly
lower median distances compared to low vulnerability classes (air-
plane, automobile, horse, ship, truck). (c) Individual distance dis-
tributions for high vulnerability classes, with cat showing the low-
est distances (mean: 41.76) and frog the highest (mean: 111.67).
(d) Individual distance distributions for low vulnerability classes,
with airplane requiring the largest distances (mean: 162.68) and
automobile the smallest (mean: 98.34).

captures its boundary, or because a large volume of input
space is mapped to that class by the model. Distinguish-
ing these two mechanisms is crucial for understanding and
improving robustness metrics. We hypothesize a “robust”
class, automatically makes it into a class demonstrating
high shielding frequency. This forces us to revisit the ideas
of class robustness, that if certain classes are robust because
the model correctly captures their decision boundaries or if
the model simply maps a large volume of the input region
to these classes making them “seem” robust. Second, the
shielding phenomenon is not purely geometric: many or-
dered pairs are effectively blocked not because the target is
extremely far in Fisher length but because other class re-
gions lie between the source and the intended target in ge-
ometry. This observation has quite strong implications for
robustness measurements and suggests we take into account
the topology of the classifier prediction regions as well.
We do note several limitations of this yet ongoing work.
Firstly, the experiments till now only use a single pretrained
classifier; the accuracy of our claims would require testing
this for a larger number of models, so generalisation across
models remains an important direction for future work. Re-
cent studies on efficient Fisher estimation and on the short-

Figure 3. Each cell displays box plots of FR distances for the
top 3 most frequent shielding classes that intercept adversarial
paths from high-vulnerability source classes (airplane, automo-
bile, horse, ship, truck) to low-vulnerability target classes (bird,
dog, frog, cat, deer). The box plots reveal the distribution of de-
cision boundary distances when each shielding class successfully
prevents direct adversarial transitions. Higher FR distances indi-
cate stronger shielding effectiveness, as the model requires larger
perturbations to bypass these protective classes. Sample sizes
are shown below each shielding class name, representing the fre-
quency of each shielding event across multiple adversarial paths.

comings of empirical Fisher approximations have high-
lighted the importance of using the true FIM and recogniz-
ing the pitfalls of empirical substitutes [17, 19, 35]. Instead
we use the approximate FIM to make the computational cost
managable for the CIFAR-10 test dataset. Moreover, the
efficiency gains in computing the FIM-vector product rely
on Monte Carlo sampling with a limited number of samples
(C/5), introducing an element of stochasticity and potential
inaccuracy into each step of the natural gradient descent.
The iterative solver uses a Tikhonov regularization term,
and a CG stopping tolerance, and while we verified that
the principal qualitative phenomena are robust to modest
changes in damping, a comprehensive sensitivity analysis
of solver hyperparameters is imperative to reach a stronger
conclusion.
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