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Problem of Perceived Robustness

Conventional robustness metrics rely on Euclidean perturbations that ignore the manifold
structure of a classifier’s output probabilities. We revisit robustness from an information‐
geometric perspective and show that high “robustness” can emerge because surrounding de‐
cision regions shield a class, not because its boundary is genuinely stable. Our contributions:

Develop a Fisher–Rao (FR) margin framework that measures how far an input must travel
on the predictive manifold before the predicted class changes.
Expose class shielding: intermediate classes deflect natural‐gradient trajectories, inflating
perceived robustness for the shielded class.
Provide empirical evidence on CIFAR‐10 that the classes considered “robust” are also those
that most frequently shield neighbouring categories.

Fisher–Rao Margins

Let p(y | x; θ) be the classifier and J(y, x; θ) = − log p(y | x; θ). The data‐space Fisher Informa‐
tion Matrix (FIM) at x is

Gx =
∑

c

pc(x; θ) [∇xJ(c, x; θ)][∇xJ(c, x; θ)]⊤,

which equips the predictive manifold with a Riemannian metric capturing how output probabili‐
ties react to perturbations. DistancesmeasuredwithGx respect themodel’s intrinsic geometry,
unlike conventional ℓp norms.
Second‐order (local) approximation. For small perturbations δ, the FR length satisfies

DFR(x, x + δ) ≈
√

δ⊤Gxδ +O(∥δ∥2).
For a path γ(t) in input space, the FR length is

DFR(x0, x1) =
∫ 1

0

√
γ̇(t)⊤Gγ(t) γ̇(t) dt.

The FR margin of input (x, y) is the minimum FR distance required to change the predicted
class:

margin(x, y) = min
x′

{
DFR(x, x′) : arg max

c
pc(x′; θ) ̸= y

}
.

This metric reveals whether robustness stems from meaningful logit stability or merely from
the geometry of surrounding decision regions.

Natural-Gradient Margin Tracing

We approximate FR margins by following unit‐length natural‐gradient steps along the logit gap
Lk(x) = log py(x; θ)− log pk(x; θ).
Require: Input x0, true class y, target class k, damping λ
Ensure: Estimated margin DFR and intervening class
1: x← x0, DFR← 0
2: while arg maxc pc(x; θ) = y do
3: Compute g = ∇xLk(x) where Lk(x) = log py(x; θ)− log pk(x; θ)
4: Solve (Gx + λI)v = g using conjugate gradients
5: Compute step δ = v/

√
g⊤v

6: Update x← x + δ
7: Accumulate DFR← DFR + 1
8: end while
9: return DFR, arg maxc pc(x; θ)

Key theoretical statements

Shielding Necessitates Intermediate Mass. Consider a smooth classifier on a compact domain.
If a class A shields a class B along natural‐gradient geodesics from C to B, then there exists an
open set where the predictive mass of A is bounded below by a positive constant. In particular,
shielding is a geometric–probabilistic statement about volumetric occupancy of the predictive
manifold.
FR vs Euclidean vulnerability ranking. Let D be a dataset and let rankFR and rankℓ2 be vul‐
nerability ranks computed with FR margins and Euclidean norms respectively. Then, under the
empirical Fisher approximation and mild regularity,

rankFR = rankℓ2 +o(1)
as the sample size grows, but constant offsets can appear due to anisotropic score‐variances.

Experiments

Setup. We analyze 3,659 successful class‐transition paths generated from 800 CIFAR‐10 test
images under a pretrained ResNet classifier. Each source image spawns natural‐gradient tra‐
jectories towards all nine alternative targets. We record the cumulative FR distance, the first
class hit, and whether shielding occurs.

The path matrix shows that animal classes (bird, cat, dog, frog) rarely retain their predictions,
whereas vehicles and ship remain dominant self‐labels.

Class Shielding% Mean FR margin Mean ∥δ∥2 Vuln rank

airplane 58.2 3.21 0.98 1
automobile 40.5 2.76 0.84 3
bird 12.1 1.05 0.32 9
cat 9.8 0.98 0.28 10
deer 18.4 1.48 0.52 7
dog 14.2 1.12 0.35 8
frog 21.0 1.78 0.60 6
horse 27.5 2.05 0.70 5
ship 62.7 3.45 1.12 2
truck 51.7 2.98 0.95 4

Columns: Shielding% = fraction of successful paths for which the class was the first intervening label; Mean FR margin = average FR
distance required to flip from source to any other target; Mean ∥δ∥2 = average Euclidean norm at flip; Vuln rank = vulnerability (1 = most
robust).

Attack Effort in FR Space

Vulnerable classes require small FR distances to flip, aligning with classical adversarial findings.
Airplane and ship demand the largest FR shifts, suggesting that their probability mass covers
extensive regions of the predictive manifold.

Shielding Frequency Landscape

High to Low Shielding Low to High Shielding

Vehicle‐style classes (truck, ship, airplane) dominate as shields when moving from robust to
fragile classes (left). The reciprocal analysis (right) shows that fragile classes almost never shield
their robust counterparts, underscoring the directional nature of shielding.
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