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Key theoretical statements

Conventional robustness metrics rely on Euclidean perturbations that ignore the manifold
structure of a classifier's output probabilities. We revisit robustness from an information-
geometric perspective and show that high “robustness” can emerge because surrounding de-
cision regions shield a class, not because its boundary is genuinely stable. Our contributions:

= Develop a Fisher—-Rao (FR) margin framework that measures how far an input must travel
on the predictive manifold before the predicted class changes.

= Expose class shielding: intermediate classes deflect natural-gradient trajectories, inflating

Shielding Necessitates Intermediate Mass. Consider a smooth classifier on a compact domain.
If a class A shields a class B along natural-gradient geodesics from C to B, then there exists an
open set where the predictive mass of A is bounded below by a positive constant. In particular,
shielding is a geometric—-probabilistic statement about volumetric occupancy of the predictive
manifold.

FR vs Euclidean vulnerability ranking. Let D be a dataset and let rankpg and rank,, be vul-
nerability ranks computed with FR margins and Euclidean norms respectively. Then, under the

(a)

perceived robustness for the shielded class. empirical Fisher approximation and mild regularity,

= Provide empirical evidence on CIFAR-10 that the classes considered “robust” are also those rankpg = rankg, +o(1)

that most frequently shield neighbouring categories.

as the sample size grows, but constant offsets can appear due to anisotropic score-variances.

Fisher-Rao Margins

Vulnerable classes require small FR distances to flip, aligning with classical adversarial findings.
Airplane and ship demand the largest FR shifts, suggesting that their probability mass covers
extensive regions of the predictive manifold.

Let p(y | x;0) be the classifier and J(y,x;60) = —logp(y | x;0). The data-space Fisher Informa-
tion Matrix (FIM) at x is

Gx =Y pe(x;0) [VxJ (¢, x;0)][[VxJ(c,x;0)]

Setup. We analyze 3,659 successful class-transition paths generated from 800 CIFAR-10 test
Images under a pretrained ResNet classifier. Each source image spawns natural-gradient tra-
Jectories towards all nine alternative targets. We record the cumulative FR distance, the first
class hit, and whether shielding occurs.
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which equips the predictive manifold with a Riemannian metric capturing how output probabili-
ties react to perturbations. Distances measured with Gy respect the model’s intrinsic geometry,
unlike conventional £, norms.
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Second-order (local) approximation. For small perturbations 6, the FR length satisfies .
DFR(X, X —I_ 5) ~ \/6—|_ G’X5 _l_ O(”5“2). cat{ 53% 1.0% 13.8% 30.6% 9.3% 10.6% 19.6% 3.2% 1.0% 5.4% §
For a path ~(¢) in input space, the FR length is S T mEa T e
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The FR margin of input (x,y) is the minimum FR distance required to change the predicted
class:
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This metric reveals whether robustness stems from meaningful logit stability or merely from
the geometry of surrounding decision regions.

The path matrix shows that animal classes (bird, cat, dog, frog) rarely retain their predictions,
whereas vehicles and ship remain dominant self-labels.

Natural-Gradient Margin Tracing
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We approximate FR margins by following unit-length natural-gradient steps along the logit gap Class Shielding % Mean FR margin Mean ||d|]o Vuln rank High to Low Shielding Low to High Shielding
Ly(x) = log py(x; 0) — log pi(x; 0). airplane 589 391 0.98 1 Vehicle-style classes (truck, ship, airplane) dominate as shields when moving from robust to
Require: Input xq, true class y, target class k, damping A automobile 40.5 2 76 0.84 3 fragile classes (left). The reciprocal analysis (right) shows that fragile classes almost never shield
Ensure: Estimated margin Dgr and intervening class bird 121 1.05 0.32 9 their robust counterparts, underscoring the directional nature of shielding.
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