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Abstract. This paper introduces Top-GAP, a novel regularization tech-
nique that enhances the explainability and robustness of convolutional
neural networks. By constraining the spatial size of the learned feature
representation, our method forces the network to focus on the most
salient image regions, effectively reducing background influence. Using
adversarial attacks and the Effective Receptive Field, we show that Top-
GAP directs more attention towards object pixels rather than the back-
ground. This leads to enhanced interpretability and robustness. We achieve
over 50% robust accuracy on CIFAR-10 with PGD ϵ = 8/255 and 20 itera-
tions while maintaining the original clean accuracy. Furthermore, we see
increases of up to 5% accuracy against distribution shifts. Our approach
also yields more precise object localization, as evidenced by up to 25%
improvement in Intersection over Union (IOU) compared to methods like
GradCAM and Recipro-CAM.

Keywords: Class activation maps · Robustness · Adversarial attacks

1 Introduction

Modern computer vision has made remarkable progress with the proliferation
of Deep Learning, particularly convolutional neural networks (CNNs). These
networks have demonstrated unprecedented capabilities in tasks ranging from
image classification to semantic segmentation [54]. However, the explainability
of these models remains a critical problem.

Many previous attempts to improve explainability have focused on improving
class activation maps of the already trained networks. We propose a different ap-
proach that focuses on a novel method to regularize the network during training.
A constraint is added to the training procedure that limits the spatial size of the
learned feature representation which a neural network can use for a prediction.
Unlike [35], we do not need KKT conditions or the Lagrangian. The disadvantage
of direct constrained optimization is that it can make gradient descent fail to
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Fig. 1: Example images from a biological classification dataset (a) and ImageNet (b),
where we limit the locations in the output feature map that the CNN can use to make
predictions. Increasing the allowed pixel count leads to more pixels being highlighted
in the class activation map (CAM). If the object size is not known or variable, the pixel
constraint with the highest accuracy can be selected.

converge if the algorithm is not modified. Instead, we force the network to only
use the most important k locations in the feature map. The "importance" stems
from an additional sparsity loss that forces the network to output an empty fea-
ture map. Part of the loss tries to increase k locations, while another part tries
to set all of them to zero. This constraint simplifies the optimization problem
and allows us to keep the same accuracy as the unconstrained problem.

Restricting the output feature maps fundamentally changes the way the net-
work works internally. In Fig. 1, we see an example on how the constraint affects
the class activation map (CAM). We also found that the networks trained with
our approach become more robust. The intuition behind our proposed method
is based on the observation that if the sample size of a class is too small, the
network may tend to focus on the background instead of the object itself [41,42].
This can lead to undesirable biases in the classifier. In our approach, the con-
straint forces the network to not focus so much on the background.

The main contributions of this paper are:

– Size Priors: We propose Top-GAP, a regularization technique incorporating
a size prior directly into the network architecture. This method constrains
the number of pixels the network utilizes during training and inference. It
is beneficial for object classification tasks in contexts without perspective
projections, such as biomedical imaging and datasets with centered objects.

– Effective Receptive Field (ERF): We link Top-GAP to the ERF and
measure the influence of the feature output on the background and object
pixels. We show that Top-GAP directs the network’s focus towards object
pixels, reducing background influence.
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– Robustness to Adversarial Attacks and Distribution Shifts: Further
evidence that the background is less important is given by our robustness
experiments. Top-GAP improves robustness against PGD and Square At-
tack, achieving up to 50% higher accuracy without adversarial training. It
also enhances accuracy by up to 5% for datasets such as Waterbirds [42].

– Intersection over Union: By adjusting the pixel constraint, our method
enables the network to focus more precisely on specific objects, leading to
up to a 25% improvement in Intersection over Union (IOU) compared to
GradCAM and Recipro-CAM [7].

2 Related Work

Our work is related to different strands of research, each dealing with different
aspects of improving the features and robustness of neural networks. This section
outlines these research directions and introduces their relevance to our novel
approach.

Adversarial robustness. It has been shown that neural networks are sus-
ceptible to small adversarial perturbations of the image [15]. For this reason,
many methods have been developed to defend against such attacks. Some meth-
ods use additional synthetic data to improve robustness [16,51]. [51] makes use of
diffusion models, while [16] uses an external dataset. Other methods have shown
that architectural decisions can influence robustness [21, 36]. A disadvantage of
all these approaches is that the clean accuracy and training speed are negatively
affected [10,38].

Bias mitigation and guided attention. A notable line of research con-
centrates on channeling the network’s focus towards specific feature subsets. Of
concern is the prevalence of biases within classifiers, arising due to training on
imbalanced data that perpetuates stereotypes [5]. Biases may also stem from
an insufficient number of samples [4, 6, 55], causing the network to emphasize
incorrect features or leading to problematic associations. For instance, when the
ground truth class is "boat", the network might focus on waves instead of the
intended object.

[18, 53] introduce training strategies to use CAMs as labels and refine the
classifier’s attention toward specific regions. In contrast, [39] proposes transform-
ing the input images to mitigate biases tied to protected attributes like gender.
Moreover, [26] suggests a method to uncover latent biases within image datasets.

Weakly-supervised semantic segmentation (WSSS). [25] focuses on
accurate object segmentation given class labels. The Puzzle-CAM paper [23] in-
troduces a novel training approach, which divides the image into tiles, enabling
the network to concentrate on various segments of the object, enhancing segmen-
tation performance. There are many more publications that focus on improving
WSSS [45]. Some making use of foundational models such as Segment Anything
Model (SAM) [24] or using multi-modal models like CLIP [37].

Priors. Prior knowledge is an important aspect for improving neural network
predictions. For example, YOLOv2 [40] calculated the average width and height
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of bounding boxes on the dataset and forced the network to use these boxes
as anchors. However, there are many other works that have tried to use some
prior information to improve predictions [8,20,35,48,57]. In particular, [35] has
proposed to add constraints during the training of the network. For example,
they propose a background constraint to limit the number of non-object pixels.
However, they only train the coarse output heat maps with convex-constrained
optimization. The problem is that the use of constraints can make it harder to
find the global optima. Therefore, it is harder to train the whole network.

Our approach. Much like bias mitigation strategies and attention-guided
techniques, we direct the network’s focus to specific areas. However, our ap-
proach does not require segmentation labels and only minimally changes the
CNN architectures. The objective is to maintain comparable clean accuracy and
the number of parameters, while significantly improving the interpretability of
objects. In contrast to WSSS, we do not intend to segment entire objects, but
instead continue to concentrate on the most discriminative features. Given that
we modify the classification network itself, we also diverge from methods that
solely attempt to enhance CAMs of pretrained models.

3 Method

In most cases of image classification, the majority of pixels are not important
for the prediction. Usually, only a small object in the image determines the
class. Our approach is geared towards these cases. In contrast, many modern
CNNs implicitly operate under the assumption that every pixel in an image
can be relevant for identifying the class. This perspective becomes evident when
considering the global average pooling (GAP) layer [27] used in modern CNNs.
The aim of the GAP layer is to eliminate the width and height dimensions of the
last feature matrix, thereby making it possible to apply a linear decision layer.
The GAP layer averages all locations within the last feature matrix without
making a distinction between the positions or values. This means that a corner
position is treated in the same way as a center position. We also note that each
of the locations in the last feature matrix corresponds to multiple pixels in the
input image. This is known as the receptive field. Now, we want to define more
formally the terminology.

Definition 1 (Effective receptive field). Let X(p)

i(p),j(p)
be the feature matrix

on the pth layer for 1 ≤ p ≤ n with coordinates (i(p), j(p)). The input to the
neural network is at p = 1 and the output feature map at p = n. Then the
effective receptive field (ERF) of the output location (i(n), j(n)) with respect to

the input pixel (i(1), j(1)) is given by
∂X

(n)

i(n),j(n)

∂X
(1)

i(1),j(1)

[31].

This definition assumes that each layer has only a single channel. For multiple

output channels, we compute
∑c(n)

k=1

∂X
(n)

i(n),j(n),k

∂X
(1)

i(1),j(1)

where c(n) are the channels of
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the last feature map. The ERF characterizes the impact of some input pixel on
the output.

Definition 2 (Global Average Pooling). The feature output of the neural
network X(n) is averaged to obtain a single value. This operation is known as
Global Average Pooling (GAP) and is defined as:

GAP(X(n)) =
1

h(n)w(n)

h(n)∑
i=1

w(n)∑
j=1

X
(n)
i,j ,

where h(n) is the height and w(n) is the width of the output feature map. In
practice, there is not only one channel but c(n) channels.

An example shall explain the two terms. In case of EfficientNet-B0 [46], X(n)

has dimension 7×7×1280 for an input image of size 224×224 where c(n) = 1280
are the channels. The GAP(·) operation reduces X(n) to a vector of size 1280×1.
All of the 7 × 7 locations have an effect on the classification. With the help of
the ERF, we can measure how much the 2242 input pixels contribute to the 72

output locations.
Another method to analyze what the neural network focuses on are the so-

called class activation maps. These methods modify X(n) so that we get a visu-
alization of what is important for the neural network.

Definition 3 (Class Activation Map). The product of multiplying the output
tensor X(n) by some weight coefficient W is known as a class activation map
(CAM) [56]. The standard CAM, also known as "CAM", uses the weights of the
linear decision layer L.

In the previous example, the linear decision layer L would map the 1280
channels to c(n+1) class channels. The output of the CAM would be in this case
7×7×c(n+1). Each of the c(n+1) maps can be upsampled to obtain a visualization.

Definition 4 (GradCAM). GradCAM is a generalization of CAM to non-
fully convolutional neural networks (non-FCN) such as VGG. It is equivalent to
the standard CAM for FCN like ResNet. It is defined as follows

GradCAM(X, c) = ReLU

(∑
k

Wk,c, Xk

)
,

with Wk,c = GAP
(

∂L(X)c
∂Xk

)
, k being the channel index of X and c being the

index of the linear layer. Usually the last feature map X(n) is chosen for X.

In addition to GradCAM, there are many other CAM methods. However,
they are all based on reducing the channels of X(n) in order to obtain a visu-
alization. Instead of improving GradCAM, as so many approaches have done
before [9, 13, 22, 33, 49], we propose that the output of the CNN should be both
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a CAM and a prediction. Then we can regularize the CAM during training and
can more fundamentally influence what is highlighted in the CAM.

Our approach involves integrating an object size constraint directly into the
network, designed to enforce the utilization of a limited set of pixels for classifi-
cation. This constraint allows for noise reduction and the elimination of unnec-
essary pixels from the CAM. In cases where specific-sized features determine the
class, we can incorporate this prior knowledge into the neural network, enhancing
its classification accuracy.

Before introducing the object constraint, we first change the model structure
to output a higher-resolution CAM.

3.1 Changing the model output structure

Figure 2 shows the general structure of our architecture. The backbone can be
any standard CNN such as VGG [44], ResNet [17], ConvNeXt [30] or EfficientNet
[46]. Depending on the backbone, we use the last 3 or 4 feature maps as input
to a feature pyramid network (FPN) [28]. We note that the original FPN as
used for object detection was simplified in order to reduce parameters. All the
feature maps are upsampled to the size of the largest feature map and added
together. We found no advantage in using concatenation. This output is given
to a final convolutional layer that has the number of output classes as filters.
Note that a convolutional layer with kernel size 1 is used for the implementation
of the final linear layer. Optionally, dropout can be applied as regularization
during training. Lastly, we employ Top-GAP to obtain a single probability for
each class. Top-GAP is introduced in the following section.

Input

Backbone

F5

F4

F3

Conv BN ReLU Upsample +

Conv BN ReLU

Conv BN ReLU Upsample

FPN

Conv

Top-GAP

CAM

Outputs

Fig. 2: Example of our architecture applied to a backbone with 3 feature maps (e.g.
7× 7, 14× 14, 28× 28). For all convolutions except the final one, a kernel size of 3 and
256 filters is used. The last convolution employs a kernel size of 1, with the number of
filters set to match the number of output classes. The CAM is as large as the biggest
feature map (here F3). Our pooling layer ("Top-GAP") averages the CAMs given by
the last convolutional layer ("Conv") to create a vector containing the probability for
each class. For the CAM, we disable "Top-GAP" and perform min-max scaling.

For convenience, we explicitly define two modes for our model (refer to Fig. 2):
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1. CAM: The output feature map is upsampled to the size of the input image
and normalized to be in the range [0, 1].

2. training/prediction: Top-GAP is enabled to obtain the probabilities for each
class.

Without our modified model, we would need to use a method such as Grad-
CAM to obtain a visualization.

Let us compare the two approaches: EfficientNet-B0 with GradCAM and
EfficientNet-B0 with our output structure (see Fig. 2). GradCAM does not re-
quire any additional parameters because it generates the activation map from
the model itself. If we change the model structure, we have more parameters, but
also more influence on what is seen in the CAM. If we were to replace GradCAM
with LayerCAM or some other method, it would never have the same impact as
changing the model training itself (our approach). In addition, GradCAM does
not combine multiple feature maps by default to achieve better localization.

In our approach, the standard output linear layer of some classification model
like EfficientNet-B0 is substituted with f + 1 convolutional layers, where f cor-
responds to the number of feature maps. This leads to a small increase in the
number of parameters.

Architecture Params (unmodified) Params (ours)

VGG11-BN 132.87M 12.43M
EfficientNet-B0 4.08M 4.75M
DenseNet-121 7.98M 8.03M

Table 1: Number of parameters for some architectures. We
have fewer parameters than VGG because all additional lin-
ear layers are removed.

As indicated in
Tab. 1, we can achieve
a comparable number
of parameters.

These changes to
the model are pre-
requisites for enabling
the integration of size
constraints within the
neural network. If only
the last feature map
were used, a single

value would correspond to an excessively large area in the original image. Hence,
combining multiple feature maps proves advantageous. This idea is reinforced by
findings from [22], which highlight that employing multiple layers enhances the
localization capabilities of CAMs.

3.2 Defining the pixel constraint (Top-GAP)

Instead of using the standard GAP layer, we replace the average pooling by a top-
k pooling, where only the k highest values of the feature matrix are considered for
averaging. This pooling layer limits the number of input pixels that the network
can use for generating predictions.

In a standard CNN, the last feature map is at layer n. In our model (Fig. 2),
the last feature map is at n+ 1 because we replaced the linear decision layer L
by a 1× 1 convolution.
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Definition 5 (Top-GAP). We define the Top-GAP layer as follows:

Top-GAP(X̃, k)t =
1

k

k∑
i=1

X̃i,t ,

where X̃ represents the ordered feature matrix X(n+1) with dimensions
h(n+1)w(n+1)×c(n+1), where c(n+1) corresponds to the number of output classes.
Each of the c(n+1) column vectors is arranged in descending order by value, and
k values are selected. i indicates the ranking, with i = 1 being the largest value
and i = k being the smallest. t is an index indicating the channel. We select for
each channel different values.

When k = 1, we obtain global max pooling (GMP). When k = h(n+1)w(n+1),
the layer returns to standard GAP. The parameter k enforces the pixel con-
straint, and its value depends on the image size. For instance, if the largest
feature map has dimensions 56× 56, then k

562 values are selected. Hence, when
adjusting this parameter, it is crucial to consider the relative object size in the
highest feature map.

3.3 Classification loss function

The last component of our method involves changing the loss function. While
the Top-GAP(·) layer considers only locations with the highest values, these
locations might not necessarily be the most important ones. Thus, it becomes
essential to incentivize the reduction of less important positions to zero.

To achieve this, we add an ℓ1 regularization term to the loss function, induc-
ing sparsity in the output. The updated loss function is defined as follows:

L = λ||X(n+1)||1 + CE (ŷ, y) , (1)

where CE(ŷ, y) represents the cross-entropy loss between the prediction ŷ =

softmax
(
Top-GAP(X̃, k)

)
and the ground truth y. X̃ is the ordered X(n+1)

feature output in our model, while k is a fixed non-trainable parameter. Here,
λ controls the strength of the regularization. We found that for most datasets
λ = 1 is sufficient.

4 Evaluation

In this section, we will systematically test the claims of our method on several
datasets. Since there is no ground truth for explainability, we focus mainly on
surrogate measures. Our main surrogate measure for interpretability is the back-
ground of the image. We show that our method causes the network to focus less
on it. Furthermore, we also evaluate how our model behaves in the presence of
distribution shifts. A description of the datasets used here can be found in the
appendix A.
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Our method consists of three components: Top-GAP, model structure, and
loss function. Top-GAP has a hyperparameter k that defines the number of input
pixels the network should use. We tested values k ∈ {64, 128, . . . , 1024, 2048} and
only report the result that maximizes the metric (e.g. accuracy).

4.1 Hypothesis: the gradient of object pixels becomes more
important

We want to show that with our method not all pixels in the input image have
the same influence on the output feature map X(n+1). Recall that in our model,
the last feature map is at n + 1 because we have replaced the linear layer with
a convolutional layer.

In most datasets (e.g. ImageNet), the object to be classified is located in the
center of the input image. While each pixel in the input image corresponds to
multiple values in the output feature map X(n+1), the general position is the
same. The center in the output is also the center in the input.

The input pixels should contribute much more to the center than to the
background of X(n+1). We want to quantify how much influence the input pixels
have on the center of X(n+1) and on the corner of X(n+1). For this, we use
Definition 1 and define a metric.

Definition 6 (ERF distance). Let ERF(1, 1) = 1
hw

∑
i,j

∣∣∣∣∂X(n+1)
1,1

∂X
(1)
i,j

∣∣∣∣ to be the

absolute change of the output corner position (1, 1) with all input pixels (i, j).
Similarly, we define ERF(h2 ,

w
2 ) to be the change of the output center position

with respect to the input, where h and w is the width of the output feature map.
Then the ERF distance is ERF(h2 ,

w
2 )− ERF(1, 1).

Intuitively, we expect a low value for ERF(1, 1) because the corner position
of the feature map contains less information. Similarly, ERF(h2 ,

w
2 ) should be a

high value because the object is in the center. If the difference between the two
values is low, it means that each pixel contributes similarly to the output.

Table 2 shows that for the standard CNN the center of the image has the
same effect as the corner. ERF(1, 1) has the same value range as ERF(h2 ,

w
2 ).

Compare this to our approach, where there is a large difference between the
center and the corner ERF.

During backpropagation, the neural network goes from the end to the be-
ginning of the network and updates the weights. With our method, we set the
gradient at the background positions of the last feature matrix to almost zero.
This also affects all other layers as a consequence of the chain rule.

The visualization in Fig. 3 confirms the numerical results. Since there are
72 = 49 positions for the standard ResNet and 562, we only considered 9 pixel
positions. We see that the gradient disappears at the locations where there is
no object. More numerical details are provided in the appendix in Tab. A1 and
Tab. A2.
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Dataset Arch ERF distance ↑ ERF distance (ours) ↑

COCO [29]
EN 0.108 0.447
CN 0.072 0.288
RN 0.273 0.399

Oxford [34] EN 0.013 0.383
RN 0.060 0.443

CUB-200-2011 [47]
EN -0.033 0.480
CN -0.034 0.242
RN 0.092 0.529

Table 2: The table shows that our approach leads to a different ERF. The center has
a stronger effect than the corner of the image. "Ours" is our approach (with pixel con-
straint, ℓ1 loss and the changes to the model). The other column is the standard model
without any changes. EN = EfficientNet-B0, CN = ConvNeXt-tiny, RN = ResNet-18.

ERF(1,1) ERF(1,4) ERF(1,7)

ERF(4,1) ERF(4,4) ERF(4,7)

ERF(7,1) ERF(7,4) ERF(7,7)

(a) Standard ResNet-18

ERF(1,1) ERF(1,28) ERF(1,56)

ERF(28,1) ERF(28,28) ERF(28,56)

ERF(56,1) ERF(56,28) ERF(56,56)

(b) ResNet-18 with our approach

Fig. 3: ERF for various locations in the output feature map. The background becomes
less important using our approach. The last feature map of standard ResNet has size
7× 7, with our approach it has size 56× 56.

4.2 Hypothesis: the background is less susceptible to adversarial
attacks

The last experiment showed that by changing the values in the output feature
matrix, we also change the effect of the input pixels. Another idea to prove that
the network focuses less on the background is to use adversarial attacks. The goal
of such an attack is to change the input pixels so that the classification prediction
is different. Using our method, we expect the attack area to be smaller since the
network uses the background less.

It is important to emphasize that we only need to achieve higher robustness
against standard models. Our goal here is to force the network to focus on
different regions in order to achieve better interpretability. We do not intend to
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compete with adversarially trained networks. Adversarial training (AT) is slower,
leads to less clean accuracy and does not make the networks more interpretable.

Method Arch PGD20 ↑ PGD50 ↑ Square ↑ Clean ↑
Standard PRN18 0.0 0.0 0.0 0.945

Top-GAP (ours) PRN18 0.517 0.313 0.343 0.951

FGSM-AT [2] PRN18 - 0.476 - 0.81
SAT [36] RN50 0.552 - - 0.849

Table 3: Results on CIFAR-10. We use ℓ∞ = 8/255 and 20/50 steps (PGD). For AT
models, we report the values from the papers. SAT = Standard Adversarial Training,
PRN18 = PreAct ResNet-18, RN50 = ResNet-50. Our results are close to the robustness
of adversarially trained networks.

Tab. 3 shows that we outperform the standard models by far and even achieve
comparable clean accuracy. Notably, square attack [1] does not rely on local
gradient information. It should, therefore, be not affected by gradient masking.
This shows that our robustness is not necessarily a result of "shattered gradients"
[3]. On other datasets, such as ImageNet, we similarly see small increases in
robustness while keeping the same accuracy (refer to the appendix Tab. A3).

To make the argument that the network is less susceptible to attacks to
the background even more convincing, we consider the FGSM attack [14]. It
uniformly perturbs each pixel by ±k for some 1 ≤ k ≤ 255. Instead of perturbing
the whole image, we perturb either just the object or just the background. For
this, we use the segmentation mask provided by the CUB dataset.

Definition 7 (Attack distance). Let SAR(I) = 1 − Acc be the successful
attack rate, given perturbed images I. We define SAR(O) − SAR(B) to be the
attack distance (AD) between the object image O and the background image B.

In image O, only the pixels of the object were changed by ±1, while all
other pixels of the original image were retained. Similarly, in image B, only the
background was perturbed while the object remained untouched. Just like the
ERF distance, we expect SAR(O) to be large and SAR(B) to be small. FGSM
should be more successful if it attacks the object and less successful if it attacks
the background.

Arch Method Attack distance

EN Standard 0.016
ours 0.064

RN Standard 0.022
ours 0.065

CN Standard 0.078
ours 0.132

Table 4: The background is less susceptible
to attacks with our approach. The dataset
is CUB-200-2011.

In Tab. 4, we see that when us-
ing the standard networks, the values
of SAR(O) and SAR(B) are close to
each other. This means that the cen-
ter has the same effect as the back-
ground. The network concentrates on
all pixels equally. With our approach,
we can manipulate the class more eas-
ily by changing the object pixels.
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Background pixels, on the other hand, are less important. For this reason,
we have a higher AD value. This gives a second proof for our hypothesis.

4.3 Hypothesis: classification makes use of object pixels

Another way to show that we are directing the attention of the network to the
object is through distribution shifts. To address this, we use the Waterbirds
dataset [42], where the backgrounds of images are replaced. Furthermore, we
evaluate accuracy on ImageNet-Sketch [50] and ImageNet-C [19].

Dataset Arch Acc ↑ Acc ↑ (ours)

CUB → Waterbirds
EN 0.521 0.564
CN 0.722 0.737
RN 0.468 0.520

ImageNet → Sketch VG 0.179 0.200
RN 0.206 0.236

ImageNet → ImageNet-C VG 0.494 0.498
RN 0.513 0.535

Table 5: Evaluation of the out-of-distribution accuracy by using images outside the
original dataset. X → Y means train on X and validate on Y.

An improvement in accuracy can be observed for all datasets. While there
are works that show higher accuracy for datasets such as ImageNet-Sketch [12],
they are based on specialized training methods (self-supervised, semi-supervised)
and/or more data. Our proposed method comes "without cost" in the sense that
it works for any architecture and dataset, without requiring more GPU resources.
It can be viewed as a regularization technique. This increase in robustness does
not negatively affect the accuracy. We also see a comparable accuracy when
using 5-fold stratified cross validation (refer to Tab. 6).

4.4 Hypothesis: increased interpretability due to pixel constraints

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Constraint (% of pixels)

0.1

0.2

0.3

0.4

0.5

1

ImageNet
COCO
Oxford
CUB
Wood

Fig. 4: Each line in the graph represents a
dataset+architecture combination. The x-axis shows
the normalized k value (e.g. 64

562
) for the constraint,

while the y-axis represents the ℓ1 norm.

The last experiments have
shown that we can direct the
attention of the network to
the object. So far, we have
used the pixel constraint k,
which maximizes the metric.
However, it is also possible
to vary this value to incor-
porate human knowledge into
the prediction. In Fig. 4, we
measure the sparsity of our
CAM.
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Dataset Arch Accuracy ↑ Accuracy (ours) ↑

COCO
EN 0.801 ± 0.009 0.803 ± 0.006
CN 0.939 ± 0.006 0.940 ± 0.005
RN 0.853 ± 0.004 0.868 ± 0.005

Wood EN 0.672 ± 0.037 0.681 ± 0.041
CN 0.721 ± 0.030 0.724 ± 0.033

Oxford EN 0.854 ± 0.008 0.863 ± 0.010
RN 0.861 ± 0.007 0.862 ± 0.007

CUB
EN 0.76 ± 0.01 0.77 ± 0.005
RN 0.69 ± 0.014 0.685 ± 0.006
CN 0.862 ± 0.007 0.854 ± 0.005

ImageNet VG 0.704 0.699
RN 0.698 0.697

Table 6: Our approach refers to the changed model with pixel constraint and ℓ1
loss. The original models come from PyTorch Image Models [52] and are pretrained
on ImageNet. EN = EfficientNet-B0, CN = ConvNeXt-tiny, RN = ResNet-18, VG =
VGG11-bn. For ImageNet, we only use a train/val split.

It is evident that as we increase the constraint k, the number of displayed
pixels in the CAM also rises. More experiments are provided in Tab. A4 and
Appendix E in the appendix.

We evaluated our approach on a real-world dataset with microscopic images.
Fig. 5 shows that we can use our constraint to direct the focus of the network
to the vessels. The standard model focuses on the background or fibers instead.
For biologists, however, only the vessels are important.

32 pixels 256 pixels 1024 pixels No constraint

Fig. 5: Impact of pixel constraint on CAM (Wood identification dataset [32]). "No con-
straint" denotes a standard unmodified EfficientNet-B0 model using CAM/GradCAM
[43]. The object in the center, known as a vessel should be highlighted. Without our
method, the background containing fibers is also highlighted.
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Finally, we assess the segmentation overlap. While segmentation masks should
not be considered as ground truth for explainability, they provide valuable in-
sights into the focus of the network. This analysis allows us to quantitatively
measure whether the network is predominantly focused on the object of interest
or on the surrounding background.

Dataset Arch IOU (GC) ↑ IOU (RC) ↑ IOU (ours) ↑

COCO
EN 0.309 0.245 0.348
CN 0.103 0.268 0.361
RN 0.371 0.359 0.391

CUB
EN 0.323 0.337 0.414
CN 0.125 0.279 0.389
RN 0.268 0.34 0.435

Table 7: Comparison of Intersection over Union (IOU) scores across different methods
and architectures. The IOU (GC) column represents the standard unchanged model
using GradCAM (GC). Similarly, RC is Recipro-CAM [7].

Tab. 7 gives even more evidence that the pixel constraint allows the network
to focus more on the object.

5 Discussion and Outlook

In this paper, we presented a new approach to improve the explainability of
CNNs. Our method focuses on controlling the number of pixels a network can
use for predictions, resulting in CAMs with lower noise and better localization.
The results show that our approach is effective on a variety of datasets and ar-
chitectures. We have consistently observed both visually and numerically more
concise feature representations in the CAMs. In addition, our approach pro-
vides a novel form of network regularization. By forcing the network to focus
exclusively on objects of a predefined size, we reduce the risk of highlighting ir-
relevant regions, which can be critical for applications that require precise object
localization or for reducing bias.

Limitations. Determining the optimal value for the pixel constraint param-
eter k currently depends on hyperparameter tuning. It is possible to explore
automated methods for determining this parameter to improve efficiency and
adaptability. Second, given the variety of object sizes, it may not be ideal to rely
on a single parameter for all objects. Only in specific areas such as biomedical
imaging, where object size are not influenced by perspective projections (e.g.
microscope) typically show low size variances. Investigating ways to dynami-
cally adjust this parameter for different object sizes would be a valuable line of
research. Finally, the proposed FPN module can be further refined to improve
accuracy even more.
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Top-GAP: Integrating Size Priors in CNNs for
more Interpretability, Robustness, and Bias

Mitigation

Supplementary Material

The appendix contains the following additional materials:

– A detailed description of the datasets: A.
– More details regarding the effective receptive field: Tab. A1, Tab. A2.
– More details regarding adversarial attacks: Tab. A3.
– More details regarding sparsity: Tab. A4, Tab. A5, Tab. A6, Tab. A7.

A Description of datasets

We test all our models on the following datasets:

– COCO [29]: We turned this segmentation dataset into a classification dataset
by excluding images with more than one object. Furthermore, we kept only
classes with a minimum of 20 samples per class. The resulting subset com-
prises 53 classes.

– Wood identification dataset [32]: This dataset consists of high-resolution
microscopy images for hardwood fiber material. Nine distinct wood species
have to be distinguished.

– Oxford-IIIT Pet Dataset [34]: The task is to differentiate among 37 breeds
of dogs and cats.

– CUB-200-2011 [47] and Waterbirds [42]: 200 classes of birds have to be dis-
tinguished. Waterbirds replaces the background of the original images to test
the models for biases.

– ImageNet [11]: A large-scale dataset with 1000 different classes. ImageNet-
Sketch [50] / ImageNet-C [19] replaces the original validation images with
out-of-distribution / corrupted images.

– CIFAR10: A dataset where each image has a size of 32× 32. 10 classes have
to be distinguished.
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B Effective Receptive Field (ERF)

In Tab. 2, we only showed the difference between the center and the corner
ERF. In the following tables, we provide the individual values. The gradients
were z-normalized to have mean at 0 and standard deviation at 1.

Dataset Architecture Center ERF ↑ Center ERF (ours) ↑

COCO [29]
EfficientNet-B0 0.534 0.54
ConvNeXt-tiny 0.47 0.439
ResNet-18 0.595 0.571

Oxford [34] EfficientNet-B0 0.087 0.51
ResNet-18 0.104 0.542

CUB-200-2011 [47]
EfficientNet-B0 0.489 0.493
ConvNeXt-tiny 0.477 0.398
ResNet-18 0.538 0.534

Average - 0.412 0.503

Table A1: Center ERF. "Ours" is our approach (with pixel constraint, ℓ1 loss, and
changes to the model). The other columns are the standard models without any
changes.

The table shows that for the center pixel the gradient with respect to the
input image is higher, when using our method.

Dataset Architecture Corner ERF ↓ Corner ERF (ours) ↓

COCO [29]
EfficientNet-B0 0.426 0.093
ConvNeXt-tiny 0.398 0.151
ResNet-18 0.322 0.172

Oxford [34] EfficientNet-B0 0.074 0.127
ResNet-18 0.044 0.099

CUB-200-2011 [47]
EfficientNet-B0 0.522 0.013
ConvNeXt-tiny 0.511 0.156
ResNet-18 0.446 0.005

Average - 0.343 0.102

Table A2: Corner ERF. The values are lower using our approach, indicating improved
performance. EN = EfficientNet-B0, CN = ConvNeXt-tiny, RN = ResNet-18.

Similarly, we see that the pixels have less of an effect when the corner of the
input image is considered.
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C Adversarial Attacks

We evaluated our approach using adversarial attacks on various datasets. For
all the experiments summarized in Tab. A3, we use an ℓ∞ constraint of 1/255
for both FGSM and PGD attacks. The PGD attacks were performed with 40
steps. The ± symbol denotes the standard deviation of the accuracy across 5
different folds. Due to computational complexity, we report only a single run for
the ImageNet dataset.

Dataset Architecture FGSM ↑ FGSM ↑ (ours) PGD ↑ PGD ↑ (ours) Clean Acc Clean Acc (ours)

COCO
EfficientNet-B0 0.07 0.3063 0.0 0.1098 0.801 ± 0.009 0.803 ± 0.006
ConvNeXt-tiny 0.51 0.678 0.301 0.463 0.939 ± 0.006 0.940 ± 0.005
ResNet-18 0.288 0.394 0.08 0.142 0.853 ± 0.004 0.868 ± 0.005

Wood EfficientNet-B0 0.0 0.277 0.0 0.085 0.672 ± 0.037 0.681 ± 0.041
ConvNeXt-tiny 0.0 0.404 0.0 0.01 0.721 ± 0.030 0.724 ± 0.033

Oxford EfficientNet-B0 0.037 0.107 0.0 0.0 0.854 ± 0.008 0.863 ± 0.010
ResNet-18 0.104 0.281 0.016 0.104 0.861 ± 0.007 0.862 ± 0.007

CUB
EfficientNet-B0 0.04 0.147 0.0 0.04 0.76 ± 0.01 0.77 ± 0.005
ResNet-18 0.06 0.212 0.0 0.111 0.69 ± 0.014 0.685 ± 0.006
ConvNeXt-tiny 0.134 0.314 0.03 0.158 0.862 ± 0.007 0.854 ± 0.005

ImageNet VGG11-bn 0.029 0.217 0.0 0.01 0.704 0.699
ResNet-18 0.065 0.256 0.0 0.059 0.698 0.697

Table A3: Adversarial attack results comparing original and modified models with
pixel constraint and ℓ1 loss. The original models come from PyTorch Image Models [52]
and pretrained on ImageNet.

While our approach does not achieve the robustness of adversarially trained
networks, it demonstrates improved performance compared to standard net-
works.
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D Sparsity

For almost all datasets and architectures, our approach achieved sparser CAMs.
We see especially large decreases for ImageNet.

Dataset Architecture ℓ1 ↓ ℓ1 ↓ (ours)

COCO [29]
EfficientNet-B0 0.179 0.064
ConvNeXt-tiny 0.251 0.151
ResNet-18 0.173 0.194

Wood [32] EfficientNet-B0 0.190 0.032
ConvNeXt-tiny 0.110 0.046

Oxford [34] EfficientNet-B0 0.154 0.072
ResNet-18 0.151 0.064

CUB-200-2011 [47]
EfficientNet-B0 0.235 0.05
ConvNeXt-tiny 0.164 0.096
ResNet-18 0.121 0.056

ImageNet [11] VGG11-BN 0.279 0.064
ResNet-18 0.387 0.123

Table A4: The last column reports the sparsity of the CAM using our approach (with
pixel constraint, ℓ1 loss, and changes to the model). The third column is a standard
model without any changes. For the standard model, we use GradCAM.

Only the lowest ℓ1 of the different k values is reported. We observe that in
general a strong pixel constraint such as k = 64 pixels leads to the lowest ℓ1
value.
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E Effect of ℓ1 normalization on robustness and
interpretability

ℓ1 regularization has a strong influence on the results. Here we want to show that
without the other components we would have lower interpretability, robustness
and/or accuracy.

We consider the following variants of ResNet-18:

– ℓ1 regularization only on the last feature output (activations) with λ = 1.0
– ℓ1 regularization only on the last feature output (activations) with λ = 0.1
– ℓ1 regularization on all activations with λ = 10−3

– ℓ1 regularization on all activations with λ = 10−5

– ours: our approach

We use the CUB-200-2011 dataset. λ denotes the strength of the regulariza-
tion.

E.1 Interpretability and accuracy

First, we analyze the effective receptive field and accuracy.

Approach λ Center ERF ↑ Corner ERF ↓ Accuracy
last 1.0 0.514 0.002 0.63
last 0.1 0.536 0.113 0.69
all 10−5 0.488 0.416 0.69
all 10−3 0.335 0.26 0.19

ours 1.0 0.534 0.005 0.69
Table A5: ℓ1 regularization is a tradeoff between accuracy and ERF for the other
approaches.

We see that we are only able to influence the ERF by regularizing the last
feature map. While the approach "last + λ = 1.0" also achieves the same ERF
as "ours", we see a significant decrease in accuracy of about 6%. Instead, we can
also decrease λ, then the accuracy is the same, but we lose interpretability.

Additionally, without our Top-GAP pooling, we can no longer control the
number of pixels. The λ parameter cannot be used for that.
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Let X be the last feature output. We measure how many pixels are high-
lighted in the output, when adjusting λ and our Top-GAP k pixel constraint.

Approach λ ||X||1 Accuracy ↑
last 1.0 0.141 0.63
last 0.1 0.152 0.69
all 10−5 0.119 0.69
all 10−3 0.389 0.19

ours, k = 128 1.0 0.057 0.66
ours, k = 256 1.0 0.072 0.67
ours, k = 512 1.0 0.126 0.68
ours, k = 1024 1.0 0.174 0.69
ours, k = 2048 1.0 0.193 0.68

Table A6: As we increase the constraint value k, the number of pixels increases. The
same behavior is not possible using λ. The accuracy would suffer too much.

When we increase the regularization strength from λ = 0.1 to λ = 1.0, the
number of pixels only decreases from 0.152 to 0.141. However, the accuracy
decreases by 6%.

Compare this to our approach. We can decrease the number of pixels while
keeping the accuracy at the same level.

E.2 Robustness

Next, we analyze the level of robustness with respect to ℓ1 regularization.

Approach λ PGD40 ↑ FGSM
last 1.0 0.06 0.15
last 0.1 0.03 0.11
all 10−5 0.0 0.06
all 10−3 0.0 0.03

ours 1.0 0.11 0.21
Table A7: Regularizing the last layer leads to the highest level of robustness. Our
approach surpasses a simple regularization.

Regularizing only the last layer also brings a certain degree of robustness,
but it comes at a price. The accuracy is lower and we still do not achieve the
same level of sparsity for λ = 1.0 as with our approach.
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