
Toward a Principled Theory of XAI via Spectral Analysis

Amir Mehrpanah1, Matteo Gamba1, Hossein Azizpour1,2
1KTH Royal Institute of Technology, Stockholm, Sweden

2SciLifeLab, Stockholm, Sweden
{amirme, mgamba, azizpour}@kth.se

Abstract

Establishing trust in AI systems requires explanations for
their decisions. However, AI models that are practically ef-
fective often express highly nonlinear functions of the data,
in turn resulting in complex explanations. Humans, by con-
trast, have a cognitive preference for low-complexity expla-
nations. Consequently, there have been various efforts to
simplify explanations of non-linear models.

A central dilemma in Explainable AI (XAI) arises at this
point: should simplification be pursued ante-hoc (i.e., de-
signing models yielding simple explanations once trained)
or post-hoc (i.e., designing explanation methods that work
with arbitrarily complex models)?

Crucially, both strategies rely heavily on heuristics and
implicit assumptions, lacking a rigorous theoretical founda-
tion. This prevents a principled analysis of the fundamental
trade-offs inherent to XAI.

This position paper advocates for spectral analysis as a
promising framework for deeper theoretical analysis of XAI.
Using image data as a case study, we examine the chal-
lenges of both ante- and post-hoc approaches and outline
future research directions.

We retrospectively analyze both approaches, uncovering
their implicit assumptions via two fundamental questions:
the source of explanation complexity and the necessity of
model complexity for a task. These questions provide a prin-
cipled basis for choosing between the two approaches.

Regardless of one’s stance, we argue that spectral meth-
ods offer a valuable foundation for formal XAI and can in-
form efforts across other modalities.

1. Introduction
Explainability is a fundamental requirement for deploying
deep learning models in sensitive domains such as health-
care, autonomous driving, and legal decision-making. As
black-box models such as deep neural networks become in-
creasingly powerful, the need to understand their internal
mechanisms and decisions has never been more critical [2].
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Figure 1. Post-hoc Filtering vs. Ante-hoc Restriction of Hy-
pothesis Space. This Venn diagram shows the relationships be-
tween post-hoc filtering (b→c→d in Fig. 2), and ante-hoc, (e and
f in Fig. 2), restriction of the hypothesis space (see Sec. 2 for dis-
cussion). Post-hoc methods search a broad space HReLU (black
set) and then apply a low-pass filter via perturbation (purple ar-
row) to remove complexity (red set), while ante-hoc methods re-
strict HReLU to low-frequency functions before training (blue set).
Note that depending on specific design parameters, the resulting
spaces may be nested subsets of each other.

As models become more intricate, their explanations of-
ten grow so elaborate, surpassing human cognitive lim-
its [8]. Empirical studies further show that humans con-
sistently favor concise accounts over detailed yet unwieldy
ones [15]. In response, the XAI literature has converged
on two broad approaches for reducing attribution complex-
ity [25], each grounded in a distinct philosophical stance:

• Ante-hoc simplification (model-centric) Designing ar-
chitectures or training regimes that induce simpler func-
tions (see HSP in Fig. 1). The guiding assumption is that
a simpler model will naturally yield simpler explanations,
sacrificing expressivity for interpretability.

• Post-hoc simplification (explanation-centric) Such
techniques approximate the complex model in a
lower-complexity space by manipulating the attribution
method (HReLU ∗ p in Fig. 1). They rely on heuristics
and implicit surrogates with typically unknown properties
(e.g., performance, faithfulness). The underlying belief is
that faithfulness can be sacrificed for interpretability.
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Figure 2. Examples From Post-hoc and Ante-hoc. This figure shows the examples of post-hoc and ante-hoc methods for controlling the
frequency content of attribution maps. Panel (a) shows the input image. Panel (b) displays the attribution map produced by VanillaGrad [21]
(VG), which exhibits high-frequency noise. Panel (d) shows the result of post-hoc smoothing using SmoothGrad [22] (SG), which effec-
tively reduces high-frequency components. This smoothing can be interpreted as a low-pass filter, implemented using a Gaussian kernel,
as visualized in (c) and analyzed in [16]. In contrast, panel (e) presents attribution maps generated by a model whose hypothesis space
has been restricted ante-hoc—prior to training—through an architectural choice, in this case, a smoother activation, SoftPlus (SP). Such
models tend to produce inherently smoother explanations without requiring post-hoc filtering. The plots beneath (b), (d), and (e) are typical
1D examples representing functions belonging to the corresponding hypothesis spaces: HReLU, HReLU ∗ p, and HSP(β) (see Fig. 1).

Both strategies share the same objective–making
deep-networks’ local behavior human interpretable—yet
they proceed from fundamentally different premises about
where the explanation complexity originates from, and
where it should be controlled: in the model itself or in the
interpretive lens applied afterward.

We analyze the trade-offs involved in each of these ap-
proaches and argue that the post-hoc vs. ante-hoc dilemma
depends ones’ position on two fundamental questions, re-
garding the source and necessity of complexity.

These questions do not favor either approach but seek to
reveal their underlying assumptions and provide a princi-
pled basis for the post-hoc vs. ante-hoc dilemma.

We focus on image data and ReLU networks, given their
strong theoretical basis [18], though the arguments general-
ize to other modalities.

We argue that the spectral perspective enables deeper
theoretical analysis, offering a promising framework to ad-
dress limitations in current XAI research.

Outline In Sec. 2, we review post-hoc methods through
the lens of spectral analysis, identifying a unifying princi-
ple: most operate as implicit low-pass filters on the network.

In Sec. 3, we leverage a spectral analysis that charac-
terize the relationship between complexity of networks and
their attributions. Showing that explanation complexity
originates from the model and not the explanation method.

In Sec. 4, we discuss whether such complexity is neces-
sary for task performance. We show that a substantial por-
tion stems from architectural choices—such as activation
functions—rather than from intrinsic task complexity.

Finally, in Sec. 5, we outline our view on XAI’s trajec-
tory, arguing that the choice between post- and ante-hoc de-

pends on one’s stance on the fundamental questions. Re-
gardless, spectral analysis remains a promising direction.
We also highlight concrete challenges in each approach.

Contributions This work (1) offers a principled basis for
choosing between post- and ante-hoc approaches via two
fundamental questions, (2) introduces spectral analysis as a
promising framework with initial results, and (3) highlights
theoretical gaps and directions for future research.

2. The Emergence of Implicit Surrogates

As neural networks grow increasingly complex, the need
for explanations of their outputs become evident to both re-
searchers and practitioners. However, there is no consensus
on what constitutes an explanation, leaving room for ex-
ploratory and heuristic approaches—an advantageous flexi-
bility in the early stages.

Possibly inspired by interpretability in linear models,
early efforts [21] focused on input gradients ∇xf of a
trained model f , also known as VanillaGrad. However,
the input gradient often appears noisy and difficult to inter-
pret due to high frequency information [10] (see Fig. 2b).
Through empirical exploration, it has been observed that
aggregating explanations over perturbed inputs reduces the
complexity of explanations [4, 22] (as in Fig. 2d).

This insight give rise to a broad class of perturbation-
based methods, later extended beyond inputs to model pa-
rameters and architectures, encouraging diverse experimen-
tal post-hoc designs [3, 5, 7, 12, 13, 19, 20, 23, 24].

A formal spectral view to explanations by [16] unifies
many post-hoc perturbation-based methods casting them as
implicit low-pass filters, attenuating high-frequency com-



ponents of the decision function (see Fig. 1 and the 1D
analogy in the second rows of Figs. 2b and 2d). We de-
note this technique as the convolution of the network’s
gradient field, ∇xf , with the perturbation distribution p,
∇xf ∗ p = ∇x(f ∗ p) = ∇xf̃ , acknowledging that it ex-
cludes other forms of perturbation, yet remains conceptu-
ally aligned with our perspective.

Although low-pass filtering is a well-established concept
in signal processing, its significance as an underlying prin-
ciple of post-hoc explainability has not been explicitly rec-
ognized. Crucially, perturbation-based explanations have
been shown to implicitly construct surrogate models via this
filtering process. The resulting implicit surrogate belongs
to a restricted hypothesis space, which forms a subset of the
original hypothesis space HReLU:

HReLU∗p = {f ∗ p : f ∈ HReLU} ⊆ HReLU. (1)

Understanding the properties of these implicit surrogates
present several challenges. Indeed, their faithfulness and
inference-time performance, are typically unknown a priori,
and are sensitive to heuristically chosen hyperparameters [1,
14]. Since the surrogate’s attributions differ from those of
the original model, a trade-off arises between faithfulness
and complexity. In practice, post-hoc methods generally
reduce explanation complexity at the cost of faithfulness.

Recent work suggests that there are more principled al-
ternatives for managing this trade-off [6]. We examine such
alternatives in the following section from our spectral view.

3. Is Explanation Complexity Intrinsic?
Some researchers implicitly assume that attribution com-
plexity stems from the attribution method itself, and may
not originate from the model complexity.

This viewpoint motivates the development of diverse ex-
planation methods—effectively different forms of low-pass
filtering—to reduce perceived complexity. However, this
raises a fundamental question (Q1):

Is the complexity of the explanation intrinsic to the model,
or is it an artifact of the explanation method?

In this section, we address this question by focusing on
the image modality. We argue that explanation complex-
ity is not solely an artifact of the explanation method, but
instead a fundamental property rooted in the spectral char-
acteristics of the neural network.

While it is commonly believed that more complex mod-
els yield more complex explanations, [17] approaches this
issue from a signal processing perspective. They interpret
the visual ”noisiness” of attributions as a manifestation of
high-frequency components in their spatial power spectrum.

Their analysis reveals a direct connection between the
spectral properties of the model and that of the attribution,
which we iterate in the following informal statement:

Theorem 1 (Informal). For models trained on spatially cor-
related data (e.g., images), the tail behavior of the model
function’s spatial power spectrum governs the tail behavior
of the gradient’s spatial power spectrum.

Refer to Appendix A for technical details.
Intuitively, this result implies that if a model relies heav-

ily on high-frequency features for prediction, then any
gradient-based explanation will inherently exhibit high spa-
tial frequency—i.e., complexity.

In simpler terms, models that exhibit sharp variations
in their input-output mapping inevitably produce complex
explanations, irrespective of the explanation method em-
ployed. Thus, the complexity intrinsic to the model natu-
rally propagates to the explanation. Consequently, this com-
plexity must be addressed either during model design, i.e.
ante-hoc, or post hoc through low-pass filtering techniques
(this is visualized in Fig. 1 as two alternatives for (b)).

This theorem establishes a critical link: understanding
explanation complexity requires understanding the com-
plexity of the model itself. The complexity arises from the
model’s decision function, not from the attribution method.

Revisiting assumptions in the post-hoc approach, it be-
comes evident that altering attribution methods to mask
model complexity is often a last resort. A more principled
approach is to reduce complexity at the modeling phase.

Next, we address the second key question: can intrinsic
model complexity be mitigated, or are post-hoc methods the
only viable option?

4. Is All Model Complexity Necessary?

In the previous section, a spectral view allowed us to for-
malize the extent to which model complexity influences ex-
planation complexity. We established—both intuitively and
theoretically—that explanation complexity arises from the
model itself and not the explanation method.

While some researchers rely on the assumption that such
complexity is an artifact of the explanation technique to
justify post-hoc methods, another common belief is that,
while explanation complexity originates from the model,
the model complexity is necessary for performance. This
leads us to the second fundamental question (Q2):

Is all of the model’s complexity necessary for the task?

As we show in Theorem 1 one of the contributors to
the complexity is the use of ReLU activations. The non-
differentiable point at zero introduces piecewise-linear be-
havior, resulting in sharp transitions in the network’s deci-
sion function and consequently high-frequency components
in gradient-based attributions.

To evaluate whether this sharpness—and thus the result-
ing explanation complexity—is necessary, we consider a
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Figure 3. Effect of Smoothness on Generalization Perfor-
mance. The figure displays experimental results obtained on the
Imagenette dataset (reproduced the results from [17]). Neural net-
works employing smoothed variants of the ReLU activation func-
tion were trained with different smoothness levels, controlled by
the parameter β (x-axis). The limit β → ∞ recovers the conven-
tional ReLU. The results indicate that constraining the network’s
capacity to represent high-frequency components leads to only a
minor decline in validation accuracy.

smooth parameterization of ReLU, the SoftPlus function
(SP), defined as

SPβ(x) =
1

β
log(1 + eβx),

where β > 0 controls the sharpness. As β → ∞, SP con-
verges to ReLU; as β decreases, it becomes smoother.

This interpolation enables a direct investigation into the
effect of architectural sharpness on explanation complexity.
Empirical results (compare Fig. 2f and Fig. 2b) demonstrate
that sharper activations lead to increased explanation com-
plexity, confirming that such complexity is inherently tied
to model design.

More formally, for positive real numbers q < r, one ex-
pects a nesting of hypothesis spaces of the form:

HSP(β=q) ⊂ HSP(β=r) ⊂ HSP(β=∞) = HReLU (2)

Crucially, this reduction in complexity can be achieved
with minimal degradation in performance (see Fig. 3).
While post-hoc methods may also reduce explanation com-
plexity, they operate on implicit surrogates whose properties
remain largely uncharacterized. In contrast, architectural
modifications provide direct, interpretable control over the
source of complexity.

These findings suggest that some model complexity
present in modern networks is a legacy of early develop-
ments in deep learning, prioritizing expressivity and capa-
bility over interpretability. Revisiting such design choices
with explainability in mind reveals new opportunities to
mitigate complexity at its source, and relying on post-hoc
remedies as a last resort.

5. Future Directions
The challenges one faces in XAI depends on their answers
to the fundamental questions regarding the source and ne-

cessity of complexity. Explicitly stating researchers’ stance
on (Q1 and Q2) prevents method–goal mismatch and clari-
fies the trade-off between complexity and simplicity.

A call for theory Irrespective of the ante-hoc vs. post-hoc
dilemma, XAI currently lacks mathematical frameworks,
and formal grounding, which we believe spectral analysis
can be promising in addressing this need.

5.1. Ante-hoc Research Directions
• Function-space restrictions Develop principled regular-

izers and architectures that bound high-frequency behav-
ior while preserving task-relevant expressivity.

• Optimization reachability Deviations from conven-
tional designs, often fall outside the scope of well-
established theoretical analyses, leaving convergence in
the restricted hypothesis space an open question.

• Inductive-bias formalization Connect architectural bi-
ases (e.g. convolutional weight sharing, activation
smoothness, batch norm, skip connections) to spectral
properties of the learned function and, by extension, to
explanation complexity.

5.2. Post-hoc Research Directions
• Design explicit low-pass filters As post-hoc approaches

share the low-pass filtering mechanism, we may re-
place implicit surrogate construction with explicit,
parameter-controlled low-pass filters whose faithful-
ness–complexity trade-off can be quantified a priori. This
leads to techniques similar to pruning or schemes that
“low-pass” the network itself, yielding a model with re-
duced explanation complexity.

• Low-pass filtering in Other Domains The spectral view
and explicit low-pass filtering allows us to extend post-
hoc explainability framework to other domains where
Fourier analysis is defined such as graphs and groups.

• Benchmark design Borrow evaluation techniques from
classical signal processing to create benchmarks that
measure both frequency attenuation and faithfulness.

Summary The practitioner’s stance on Q1 and Q2 deter-
mines their route in ante-hoc/post-hoc dilemma. Formalism
is the most important need of the current XAI research. One
approach to such formalism is the spectral view of networks
and explanation methods.

To highlight the promise in this view, we presented a
unifying view to ante-hoc and post-hoc methods, that is,
restriction of hypothesis space before or after training, re-
spectively. We identified the source of complexity in at-
tributions, i.e. the network, and suggested an ante-hoc ap-
proach for restriction of hypothesis space. We presented
previous works adopting this view that unify post-hoc ap-
proaches under one mechanism, i.e. low-pass filtering.
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[6] Moritz Böhle, Mario Fritz, and Bernt Schiele. B-cos Net-
works: Alignment is All We Need for Interpretability, 2022.
3

[7] Prasad Chalasani, Jiefeng Chen, Amrita Roy Chowd-
hury, Somesh Jha, and Xi Wu. Concise Explanations
of Neural Networks using Adversarial Training, 2020.
arXiv:1810.06583 [cs]. 2

[8] Ian Covert, Scott Lundberg, and Su-In Lee. Explaining by
Removing: A Unified Framework for Model Explanation,
2022. arXiv:2011.14878 [cs, stat]. 1

[9] Amnon Geifman, Abhay Yadav, Yoni Kasten, Meirav Galun,
David Jacobs, and Ronen Basri. On the Similarity be-
tween the Laplace and Neural Tangent Kernels, 2020.
arXiv:2007.01580 [cs]. 6

[10] Sara Hooker, Dumitru Erhan, Pieter-Jan Kindermans, and
Been Kim. A Benchmark for Interpretability Methods in
Deep Neural Networks, 2019. arXiv:1806.10758 [cs, stat]. 2

[11] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural
Tangent Kernel: Convergence and Generalization in Neural
Networks, 2020. arXiv:1806.07572. 6

[12] Andrei Kapishnikov, Subhashini Venugopalan, Besim Avci,
Ben Wedin, Michael Terry, and Tolga Bolukbasi. Guided In-
tegrated Gradients: An Adaptive Path Method for Removing
Noise, 2021. arXiv:2106.09788 [cs]. 2

[13] Beomsu Kim, Junghoon Seo, SeungHyun Jeon, Jamyoung
Koo, Jeongyeol Choe, and Taegyun Jeon. Why are Saliency
Maps Noisy? Cause of and Solution to Noisy Saliency Maps,
2019. arXiv:1902.04893 [cs, stat]. 2

[14] Pieter-Jan Kindermans, Sara Hooker, Julius Adebayo, Max-
imilian Alber, Kristof T. Schütt, Sven Dähne, Dumitru Er-
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A. Proofs and Technical Background
This section summarizes key background and proof ele-
ments adapted from [17], combining results from kernel
theory, NTK analysis, and spectral decay properties rele-
vant to gradient-based explanations.

A.1. Kernel Methods and RKHS
A kernel is a symmetric function k : X × X → R such
that Kij = k(xi, xj) is positive semidefinite for any finite
X = {x1, . . . , xn}. Common examples include the Laplace
kernel k(x, x′) = exp(−∥x − x′∥) and the Gaussian ker-
nel k(x, x′) = exp(−∥x − x′∥2). Each kernel k defines a
Reproducing Kernel Hilbert Space (RKHS) Hk in which
smoothness is dictated by k; for instance, HGaussian ⊂
HLaplace.

For shift-invariant kernels k(∆), ∆ = ∥x − x′∥, the
RKHS admits a Fourier characterization:

Hk =

{
f :

∫
|F{f}(ω)|2

F{k}(ω)
dω < ∞

}
.

Thus, the allowable sharpness of f is bounded by the spec-
tral decay of k.

A.2. Neural Tangent Kernels and Laplace Equiva-
lence

The Neural Tangent Kernel (NTK) [11] describes similarity
in terms of network weight gradients:

k̂ℓ(x, z) =

〈
∂f(x)

∂W (ℓ)
,
∂f(z)

∂W (ℓ)

〉
,

which is related to the pre-activation tangent kernel (PTK)
K(ℓ) by

k̂ℓ(x, z) = K(ℓ)(x, z) · x⊤
ℓ zℓ.

Empirical and theoretical evidence [9] shows that NTKs of-
ten closely resemble Laplace kernels in the spectral tail, al-
lowing Laplace kernels to serve as tractable surrogates for
analysis.

A.3. Spectral Tail Bound for Input Gradients
Let f(x) =

∑
i∈I αik(x, xi) and ∇f(x) =∑

i∈I αi∇k(x, xi). For shift-invariant k, the Fourier
spectrum of ∇f satisfies:

|F{∇f}(ω)|2 ∈ O
(
nω2|k̂(ω)|2

)
.

Under fixed dataset size, high spatial autocorrelation, and at
least one intersection between training and explanation tra-
jectories, a local linearization shows that the Fourier decay
of the explanation trajectory derivative x′

e(τ) satisfies

|Fτ{x′
e(τ)}|

2 ∈ O
(
ω2|k̂(ω)|2

)
.

Thus, the NTK tail decay directly determines the sharpness
of input-gradient–based explanations.

A.4. Effect of Activation Smoothing on NTK Sharp-
ness

For an activation ϕ, define its smoothed form ϕβ = ϕ ∗ gβ
where gβ is a Gaussian of precision β. In the NTK τ -
transform framework, this smoothing modifies the kernel
covariance, yielding faster spectral decay as β increases.
The K(1) term in NTK is similarly smoothed. In prac-
tice, ϕβ is approximated by a SoftPlus with parameter pro-
portional to β, interpolating between smooth (large β) and
sharp (ReLU) kernels.

Overall, these results link kernel smoothness, NTK
sharpness, and the spectral decay of explanation gradients,
forming the theoretical backbone for the spectral perspec-
tive presented in this work.
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