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A. Proofs and Technical Background387

This section summarizes key background and proof ele-388
ments adapted from [17], combining results from kernel389
theory, NTK analysis, and spectral decay properties rele-390
vant to gradient-based explanations.391

A.1. Kernel Methods and RKHS392

A kernel is a symmetric function k : X × X → R such393
that Kij = k(xi, xj) is positive semidefinite for any finite394
X = {x1, . . . , xn}. Common examples include the Laplace395
kernel k(x, x′) = exp(−∥x − x′∥) and the Gaussian ker-396
nel k(x, x′) = exp(−∥x − x′∥2). Each kernel k defines a397
Reproducing Kernel Hilbert Space (RKHS) Hk in which398
smoothness is dictated by k; for instance, HGaussian ⊂399
HLaplace.400

For shift-invariant kernels k(∆), ∆ = ∥x − x′∥, the401
RKHS admits a Fourier characterization:402

Hk =

{
f :

∫
|F{f}(ω)|2

F{k}(ω)
dω < ∞

}
.403

Thus, the allowable sharpness of f is bounded by the spec-404
tral decay of k.405

A.2. Neural Tangent Kernels and Laplace Equiva-406
lence407

The Neural Tangent Kernel (NTK) [11] describes similarity408
in terms of network weight gradients:409

k̂ℓ(x, z) =

〈
∂f(x)

∂W (ℓ)
,
∂f(z)

∂W (ℓ)

〉
,410

which is related to the pre-activation tangent kernel (PTK)411
K(ℓ) by412

k̂ℓ(x, z) = K(ℓ)(x, z) · x⊤
ℓ zℓ.413

Empirical and theoretical evidence [9] shows that NTKs of-414
ten closely resemble Laplace kernels in the spectral tail, al-415
lowing Laplace kernels to serve as tractable surrogates for416
analysis.417

A.3. Spectral Tail Bound for Input Gradients418

Let f(x) =
∑

i∈I αik(x, xi) and ∇f(x) =419 ∑
i∈I αi∇k(x, xi). For shift-invariant k, the Fourier420

spectrum of ∇f satisfies:421

|F{∇f}(ω)|2 ∈ O
(
nω2|k̂(ω)|2

)
.422

Under fixed dataset size, high spatial autocorrelation, and at423
least one intersection between training and explanation tra-424
jectories, a local linearization shows that the Fourier decay425
of the explanation trajectory derivative x′

e(τ) satisfies426

|Fτ{x′
e(τ)}|

2 ∈ O
(
ω2|k̂(ω)|2

)
.427

Thus, the NTK tail decay directly determines the sharpness428
of input-gradient–based explanations.429

A.4. Effect of Activation Smoothing on NTK Sharp- 430
ness 431

For an activation ϕ, define its smoothed form ϕβ = ϕ ∗ gβ 432
where gβ is a Gaussian of precision β. In the NTK τ - 433
transform framework, this smoothing modifies the kernel 434
covariance, yielding faster spectral decay as β increases. 435
The K(1) term in NTK is similarly smoothed. In prac- 436
tice, ϕβ is approximated by a SoftPlus with parameter pro- 437
portional to β, interpolating between smooth (large β) and 438
sharp (ReLU) kernels. 439

Overall, these results link kernel smoothness, NTK 440
sharpness, and the spectral decay of explanation gradients, 441
forming the theoretical backbone for the spectral perspec- 442
tive presented in this work. 443
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