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A. Proofs and Technical Background

This section summarizes key background and proof ele-
ments adapted from [17], combining results from kernel
theory, NTK analysis, and spectral decay properties rele-
vant to gradient-based explanations.

A.l. Kernel Methods and RKHS

A kernel is a symmetric function £ : X x & — R such
that K;; = k(x;,x;) is positive semidefinite for any finite
X ={x1,...,2,}. Common examples include the Laplace
kernel k(z,z’") = exp(—||x — 2'||) and the Gaussian ker-
nel k(x,z") = exp(—||z — 2'||*). Bach kernel k defines a
Reproducing Kernel Hilbert Space (RKHS) H;, in which
smoothness is dictated by k; for instance, HGaussian C

HLaplace-
For shift-invariant kernels k(A), A = |z — /||, the
RKHS admits a Fourier characterization:
\F{f}Hw)?
’Hk:{f: ————dw < 00 ;.
Flk}(w)

Thus, the allowable sharpness of f is bounded by the spec-
tral decay of k.

A.2. Neural Tangent Kernels and Laplace Equiva-
lence

The Neural Tangent Kernel (NTK) [11] describes similarity
in terms of network weight gradients:

- of(x) 0f(z)
k‘g(l'7 Z) = <8W(Z)a oW (© > )

which is related to the pre-activation tangent kernel (PTK)
K© by

ko(z,2) = KO(2, 2) - 2] 2.
Empirical and theoretical evidence [9] shows that NTKSs of-
ten closely resemble Laplace kernels in the spectral tail, al-
lowing Laplace kernels to serve as tractable surrogates for
analysis.

A.3. Spectral Tail Bound for Input Gradients

Let f(x) = ZiEI a;k(z,z;) and Vf(x) =
Y ier @iVk(w,2;). For shift-invariant &, the Fourier
spectrum of V f satisfies:

IF{VIH@)* € O(nw?[k(w)P).

Under fixed dataset size, high spatial autocorrelation, and at
least one intersection between training and explanation tra-
jectories, a local linearization shows that the Fourier decay
of the explanation trajectory derivative «/,(7) satisfies

oAzl (m)} € O(w?k(w)[?).

Thus, the NTK tail decay directly determines the sharpness
of input-gradient—based explanations.

A 4. Effect of Activation Smoothing on NTK Sharp-
ness

For an activation ¢, define its smoothed form ¢g = ¢ * gg
where gg is a Gaussian of precision 8. In the NTK 7-
transform framework, this smoothing modifies the kernel
covariance, yielding faster spectral decay as [ increases.
The K term in NTK is similarly smoothed. In prac-
tice, ¢z is approximated by a SoftPlus with parameter pro-
portional to 3, interpolating between smooth (large 3) and
sharp (ReLU) kernels.

Overall, these results link kernel smoothness, NTK
sharpness, and the spectral decay of explanation gradients,
forming the theoretical backbone for the spectral perspec-
tive presented in this work.
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