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Abstract

Recent work on analyzing the functionality of vision lan-
guage models has observed that key multimodal processing
occurs in the middle to late layers. This raises a natural
question about the role of early layers, which is the cen-
tral focus of our investigation. To explore this, we employ
layer skipping as a more suitable alternative to the com-
monly used attention masking, motivated by our finding that
masking vision tokens in early layers substantially degrades
performance, whereas skipping the same layers does not.
Using layer skipping, we find that vision tokens largely pass
unaltered through the early layers of the language model,
supporting the view that these layers primarily function as
copying heads for visual tokens. This insight highlights op-
portunities to improve model efficiency by reducing redun-
dant computation in the early stages.

1. Introduction
With the rapid advancement and widespread adoption of
large language models (LLMs), interpretability has become
a central research focus [19]. Interpretability research has
pushed our understanding on how models internally repre-
sent and process information further, with studies show-
ing that a combination of attention heads and MLP lay-
ers, operating as circuits, can specialize to perform func-
tional objectives such as copying, induction, and factual
recall [5, 17, 22]. Specifically, Elhage et al. [5] demon-
strated that induction heads in GPT-2 copy tokens from ear-
lier in the context, while Olsson et al. [17] showed these
induction heads are also the primary mechanism driving in-
context learning. More recently, circuit tracing has been

used to trace computational pathways that implement a spe-
cific behavior, such as multi-step reasoning and chain-of-
thought faithfulness [1, 12]. Meanwhile, sparse autoen-
coders have been used to discover and isolate interpretable
features within model activations [6, 21].

Since vision language models (VLMs) are often built
with an LLM as their backbone [2, 11, 13, 23], many of
these techniques can be directly extended to them. For in-
stance, activation probing is a commonly used technique
that maps hidden states into interpretable formats—one
common example being the logit lens [16], that was recently
used in VLMs [15] to show that visual token representa-
tions in VLMs become increasingly human-interpretable
across layers. Another line of work relates to determining
the functionality of certain layers. Akin to studying layer
functionality in LLMs, [14, 24], Jiang et al. [10], Skean
et al. [20] show that the middle-to-late layers act as the main
site for multimodal processing (and therefore, represent the
best sites for extracting) information. When it comes to
early layers, recent empirical evidence [4] suggests that for
VLMs, early layers are often redundant for multimodal pro-
cessing, and that multimodal tokens can be trained to bypass
these layers for improved efficiency [4]. However, the rea-
sons for this redundancy and the way multimodal represen-
tations evolve in the early layers remain unclear.

In this work, we investigate why this redundancy exists.
We first argue for the use of layer skipping as a tool for
exploring counterfactuals—i.e., examining VLM behavior
with or without multimodal tokens—over the more com-
monly used attention masking. We then leverage this ap-
proach to motivate our central hypothesis that the early lay-
ers of VLMs function similarly to copying heads, largely
preserving internal multimodal representations. We sub-



stantiate this with analytical experiments using established
tools from the interpretability literature. Our results pro-
vide new insight into the early-layer redundancy observed
in prior work and open up pressing questions on probing the
mechanisms that give rise to this phenomenon.

2. Layer Skipping and Masking in VLMs
We seek to understand how early layers of VLMs operate,
with special regard to multimodal tokens. Previous works
have used masking as an perturbation to see how inputs are
used. In this section, we demonstrate that its applicability
is limited via a counter-example, showing that masking de-
grades model performance quickly and may lead to incor-
rect conclusions from such studies. To avoid this, we use
layer skipping.

2.1. Mathematical Formulation
For the following experiments, we consider variations of
perturbed forward passes beyond the standard forward pass.

For clarity, we state them explicitly. Let X =

(
Xtext

Xvis

)
∈

R(ntext+nvis)×d correspond to the text and vision input and
let VLMℓ(X) be the output of the vision-language model
with ℓ layers when the input is X . Then:
1. Baseline: Y base = V LM ℓ(X) represents a standard

forward pass of the model.
2. Masked input: Y base = VLMℓ(M vis,k

i:j (X)) where
M vis

i:j (X) masks the attention to/from the vision tokens
upto layer k, with 1 ≤ i ≤ j ≤ n for some visual-text
prompt of size n.

3. Layer skip: Y skip = VLMℓ−k(

(
VLMk(Xtext)

Xvis

)
),

which runs the model on just the text input for the first
k layers and then adds the vision tokens back into the
prompt after kth layer (see Fig. 1).

2.2. Experimental Setup
In this experiment, we consider a direct comparison of the
performance degradation of layer masking versus skipping.
We use Llava 1.5 7B and 13B [13] and the Visual7W dataset
[25] with user queries formatted to first hold the vision to-
kens, then the question as a multiple choice answer to be
responded with A, B, C, or D. Because of the breadth of
questions in the dataset, asking multiple choice questions
still represents complex generation tasks with simple accu-
racy validation while still allowing simple analysis.

2.3. Experimental Results
From Table 1, skipping visual tokens in the first 4 layers
yields considerably higher performance than masking them,
while Table 2 shows a similar advantage when in the first 8
layers. Furthermore, from Figure 2, the cosine similarity

Figure 1. Visual representation of early layer skipping [4]. Specif-
ically, the visual tokens are not passed into the first few layers but
instead, directly inserted along with the prompt to the chosen layer
for insertion.

between the representations of the masking study and the
baseline is much lower than that of the layer skipping study
and the baseline. This shows that there is a fundamental
difference between the two methods, with masking leading
to irrecoverable loss of information from visual representa-
tions. On the other hand, while layer skipping may interfere
with positional encodings, it is much less likely to introduce
these unexpected perturbations or noise which obscures the
counterfactual results.

Condition Masking Skipping

Baseline 0.579 0.579
0–3 0.370 0.549
0–7 0.316 0.357
0–11 0.269 0.264
0–15 0.2760 0.284

Table 1. Accuracy of correct answer prediction when masking vs.
layer skipping layers 0− n in Llava 1.5 7B and 13B.

Condition Masking Skipping

Baseline 0.778 0.778
0–3 0.378 0.788
0–7 0.351 0.695
0–11 0.264 0.433
0–15 0.268 0.400

Table 2. Accuracy of correct answer prediction when masking vs.
layer skipping layers 0− n in Llava 1.5 13B.



Figure 2. Layer-by-layer cosine similarity between baseline hid-
den states and those obtained with masking or layer skipping us-
ing Llava 1.5 7B. The hidden states with the layer skipping method
showed much higher cosine similarity to the baseline hidden states
than the hidden states with masking.

3. Early layers are vision copying heads
One may expect masking and skipping studies to yield sim-
ilar results, since both aim to achieve the same goal of pre-
venting the model from using visual tokens in order to probe
their specific role. Yet, we observe a marked performance
gap between the two, prompting the question of why this
discrepancy arises. To address this, we start with the key
observation from the previous section that directly inserting
vision information into the later layers of the model pro-
duces little change in VLM performance. This suggests
that the trained model expects vision representations, after
passing through all layers, to reside in a subspace closely
aligned with that of skipped (and thus unaltered) tokens.
Similar conclusions have been drawn in prior work, though
with model retraining [4]. This motivates our hypothesis
that the early layers, consisting of both attention and MLP
components, function as copying heads for visual tokens.
In the remainder of this section, we test this hypothesis
through an analysis of hidden states, unembedded visual to-
kens, and an additional skipping-based perturbation study.

3.1. Definition
Induction heads were defined in [5] as a mechanism consist-
ing of two parts: a copying head which copies the previous
token and an inductive head which completes the memo-
rized pattern learned from the training data. As an exam-
ple, if an induction head learns from training data that [a]
precedes [b], then when the induction head sees an [a] in
practice, it copies [b] to be the prediction.

Because induction heads have also been hypothesized to
exist in larger language models and serve as an underly-
ing mechanism for in-context learning [17], we hypothesize
that the early layers of VLMs also serve as copying heads.
More rigorously, we give the following definition.

Definition (Copying Head): A layer ℓ functions as a

Figure 3. Cosine distance of visual and textual hidden states of
adjacent layers in Llava 1.5 7B (bottom) and 13B (top). In the
early layers the distance between hidden states of adjacent layers
is quite small.

copying head if d(xℓ−1, xℓ) < ϵ for some metric d :
Rd × Rd → [0,∞) and small ϵ > 0 where xi ∈ Rd is
the representation of a token at layer i

3.2. Empirical Evidence
In these experiments use Llava 1.5 7B and 13B [13] and the
Visual7W dataset [25] with user queries formatted to first
hold the vision tokens. The answers are left open-ended for
the experiments which don’t compute an accuracy and use
multiple choice (similar to 2.2) if an accuracy is required. In
Figure 3, we run a forward pass of the model and computed
the average cosine distance between the hidden states of to-
kens in adjacent layers across examples. We can see that in
the early layers the hidden states of the visual tokens expe-
rience minimal change, relative to the textual tokens. This
indicates that the model seems to copy the hidden states of
visual tokens between early layers.

To present further evidence of these copying heads, we
use the logit lens, as in [15], to analyze the token predictions
in the early layers for visual tokens versus textual tokens.
From Figure 4, the image token predictions for the early
layers stay the same, providing evidence for the claim that
these layers act as copying heads. However, from Figure
5, the text token predictions for the early layers vary layer-
by-layer, indicating that these layers do not act as copying
heads for text tokens.

We further quantify these results by finding the proba-
bility of any layer predicting the same token as the initial
layer. In Figure 6, we see that initial token prediction of
the first layer has more than an 80% chance of being the
predicted token of layers 2-4. This suggests that the first 4
layers have a high probability of repeating the initial token



Figure 4. Example logit lens output for a set of image tokens for
the early to mid layers using [15]. In these early layers, the im-
age token predictions largely stay the same, indicating a possible
copying functionality.

Figure 5. Example logit lens output for a set of text tokens for
early to mid layers using [15]. The text token predictions seem to
change layer-by-layer not showing any copying functionality.

and thus functioning as copying heads.

Figure 6. The probability of the initial unembedded visual token
being generated in future layers. The probability of predicting the
initial token in the first 4 layers stays above 80% in both models.

Finally, to analyze the actual impact of image token rep-
resentations in early layers on model outputs, we run an
experiment similar to the causal tracing described in [3].

Figure 7. Model accuracy of using an unrelated image for the
first n layers before injecting the correct visual representation of a
clean forward pass at layer n. The accuracy of the model does not
drastically change when an unrelated image is used for the first 7
layers.

We first run a clean forward pass with the correct image
and prompt. We then run a modified forward pass with a
random image and the original prompt, where at specified
layers we inject the visual token representations from the
clean forward pass into the layer. Figure 7 shows the model
accuracy for different injection layers. We see that the drop
in performance only begins to occur around Layer 7, further
supporting the claim that the early layers are visual copying
heads.

4. Conclusion

In this work, we find that skipping visual tokens in the early
layers (i.e. layer skipping) considerably outperforms mask-
ing attention to the vision tokens, leading to the hypothesis
that the early layers act as copying heads for visual tokens.
We validate this by analyzing cosine distances of token rep-
resentations, analyzing the outputs of the VLM-extension
of the logit lens, and by inspecting the performance drops
when inputting a random image and injecting clean visual
token representations at certain layers.

We provide initial experiments for audio-language mod-
els in A

However, the most pressing question that demands atten-
tion for future work is why the model exhibits this behav-
ior and whether it is an inherent limitation of our pretrain-
ing methodologies/alignment, or whether this is a deliberate
mechanism to demarcate context (i.e. image) vs. the query
(the textual prompt) to facilitate better predictions.

In future work, we provide a set of theoretical conditions
to determine when layer skipping, such as the early vision
tokens, can be used with minimal performance degradation
[9].
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[6] Leo Gao, Tom Dupré la Tour, Henk Tillman, Gabriel Goh,
Rajan Troll, Alec Radford, Ilya Sutskever, Jan Leike, and
Jeffrey Wu. Scaling and evaluating sparse autoencoders. In
ICLR, 2025. 1

[7] Yuan Gong, Jin Yu, and James Glass. Vocalsound: A dataset
for improving human vocal sounds recognition. In ICASSP
2022 - 2022 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 151–155,
2022. 6

[8] Yuan Gong, Alexander H Liu, Hongyin Luo, Leonid Karlin-
sky, and James Glass. Joint audio and speech understand-
ing. In 2023 IEEE Automatic Speech Recognition and Un-
derstanding Workshop (ASRU), 2023. 6

[9] Max Hartman, Vidhata Jayaraman, Moulik Choraria, Akhil
Bhimaraju, and Lav R. Varshney. Skip-it? theoretical con-
ditions for layer skipping in vision-language models, 2025.
4

[10] Zhangqi Jiang, Junkai Chen, Beier Zhu, Tingjin Luo, Yankun
Shen, and Xu Yang. Devils in middle layers of large
vision-language models: Interpreting, detecting and mitigat-
ing object hallucinations via attention lens. arXiv preprint
arXiv:2411.16724, 2024. 1

[11] Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi.
Blip: Bootstrapping language-image pre-training for unified
vision-language understanding and generation. In ICML,
2022. 1

[12] Jack Lindsey, Wes Gurnee, Emmanuel Ameisen, Brian
Chen, Adam Pearce, Nicholas L. Turner, Craig Citro, David
Abrahams, Shan Carter, Basil Hosmer, Jonathan Marcus,
Michael Sklar, Adly Templeton, Trenton Bricken, Callum
McDougall, Hoagy Cunningham, Thomas Henighan, Adam
Jermyn, Andy Jones, Andrew Persic, Zhenyi Qi, T. Ben
Thompson, Sam Zimmerman, Kelley Rivoire, Thomas Con-
erly, Chris Olah, and Joshua Batson. On the biology of a
large language model. Transformer Circuits Thread, 2025. 1

[13] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee.
Visual instruction tuning. In Advances in Neural Information
Processing Systems, pages 34892–34916. Curran Associates,
Inc., 2023. 1, 2, 3

[14] Zhu Liu, Cunliang Kong, Ying Liu, and Maosong Sun. Fan-
tastic semantics and where to find them: Investigating which
layers of generative llms reflect lexical semantics, 2024. 1

[15] Clement Neo, Luke Ong, Philip Torr, Mor Geva, David
Krueger, and Fazl Barez. Towards interpreting visual in-
formation processing in vision-language models. In The
Thirteenth International Conference on Learning Represen-
tations, 2025. 1, 3, 4

[16] nostalgebraist. Interpreting gpt: the logit lens.
https : / / www . lesswrong . com / posts /
AcKRB8wDpdaN6v6ru / interpreting - gpt -
the-logit-lens, 2020. 1

[17] Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas
Joseph, Nova DasSarma, Tom Henighan, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly,
Dawn Drain, Deep Ganguli, Zac Hatfield-Dodds, Danny
Hernandez, Scott Johnston, Andy Jones, Jackson Kernion,
Liane Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown,
Jack Clark, Jared Kaplan, Sam McCandlish, and Chris Olah.
In-context learning and induction heads. Transformer Cir-
cuits Thread, 2022. https://transformer-circuits.pub/2022/in-
context-learning-and-induction-heads/index.html. 1, 3

[18] Karol J. Piczak. ESC: Dataset for Environmental Sound
Classification. In Proceedings of the 23rd Annual ACM Con-
ference on Multimedia, pages 1015–1018. ACM Press, 2015.
6

[19] Andrew D. Selbst and Solon Barocas. The intuitive appeal
of explainable machines. Fordham Law Review, 2018. 1

[20] Oscar Skean, Md Rifat Arefin, Dan Zhao, Niket Nikul Pa-
tel, Jalal Naghiyev, Yann LeCun, and Ravid Shwartz-Ziv.
Layer by layer: Uncovering hidden representations in lan-
guage models. In Forty-second International Conference on
Machine Learning, 2025. 1

[21] Adly Templeton, Tom Conerly, Jonathan Marcus, Jack Lind-
sey, Trenton Bricken, Brian Chen, Adam Pearce, Craig
Citro, Emmanuel Ameisen, Andy Jones, Hoagy Cunning-
ham, Nicholas L Turner, Callum McDougall, Monte Mac-
Diarmid, C. Daniel Freeman, Theodore R. Sumers, Edward
Rees, Joshua Batson, Adam Jermyn, Shan Carter, Chris
Olah, and Tom Henighan. Scaling monosemanticity: Ex-

https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens


tracting interpretable features from claude 3 sonnet. Trans-
former Circuits Thread, 2024. 1

[22] Yifei Wang, Yuheng Chen, Wanting Wen, Yu Sheng, Linjing
Li, and Daniel Dajun Zeng. Unveiling factual recall behav-
iors of large language models through knowledge neurons. In
Proceedings of the 2024 Conference on Empirical Methods
in Natural Language Processing, pages 7388–7402. Associ-
ation for Computational Linguistics, 2024. 1

[23] Ruohong Zhang, Bowen Zhang, Yanghao Li, Haotian Zhang,
Zhiqing Sun, Zhe Gan, Yinfei Yang, Ruoming Pang, and
Yiming Yang. Improve vision language model chain-of-
thought reasoning. In Proceedings of the 63rd Annual Meet-
ing of the Association for Computational Linguistics (Volume
1: Long Papers), pages 1631–1662, Vienna, Austria, 2025.
Association for Computational Linguistics. 1

[24] Yang Zhang, Yanfei Dong, and Kenji Kawaguchi. Investi-
gating layer importance in large language models. In The
7th BlackboxNLP Workshop, 2024. 1

[25] Yuke Zhu, Oliver Groth, Michael Bernstein, and Li Fei-Fei.
Visual7W: Grounded Question Answering in Images. In
IEEE Conference on Computer Vision and Pattern Recog-
nition, 2016. 2, 3

A. Appendix: Extensions to other modalities
As for extensions to other modalities, our initial experi-
ments with audio-language models (LTU-7B [8]) in Table
3 show that skipping early layers also does not significantly
impact performance either, suggesting that copying heads
may represent a general underlying mechanism for multi-
modal language models.

Skip Layers ESC50 VS

0 81.30 56.39
0–3 81.70 56.36
0–5 80.40 54.86
0–7 74.50 41.21
0–11 66.40 31.05
0–15 32.35 32.36

Table 3. Performance across layers on ESC50 [18] and VS [7]
audio benchmarks. Skipping early layers seems to not drastically
impact performance.
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