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Abstract

Deep models are “black-box”, meaning that their decision-
making process is often not transparent to users. To address
this issue, several post hoc methods have been proposed for
explaining the model’s predictions. However, post hoc ex-
planations are often unreliable and not faithful to the model.
Interpretable-by-design methods, such as Information Pur-
suit (IP) and its variants, map the input data to a small set of
interpretable concepts by asking a set of queries, and make
a prediction based on the sequence of query answers. Such
models are faithful by design because their predictions are
based on the explanations, i.e. the sequence of query an-
swers. However, they require either a very complex algo-
rithm for selecting which queries to ask or fully annotated
datasets for training a query-answering system. This paper
proposes IP-OMP-ConceptQA, an interpretable-by-design
method that combines an efficient query selection method
(OMP) with an accurate zero-shot query answering system
(Concept-QA). Experiments on vision data sets show that
IP-OMP-ConceptQA outperforms existing methods in terms
of accuracy, interpretability, faithfulness, and efficiency in
scenarios where very short explanations are desired.

1. Introduction

The lack of transparency of machine learning models has
raised the question of whether these “black-box” models
can be trusted [6]. For instance, when using such models
in healthcare applications, an answer to questions such as
“Why does a deep neural network classify a tumor detected
in an MRI as benign or malignant?” can have life-saving
consequences. In such cases, understanding how a predic-
tion is made is just as important as achieving high accuracy.

Related work. Most existing methods for interpreting the
predictions of a machine learning model are post hoc, i.e.,
they aim to explain the prediction after it has been made
[9, 12, 14]. Post hoc explanations typically assign an impor-
tance score to each input feature which depends on the sen-
sitivity of the model’s output with respect to each feature.
However, such explanations often do not reliably or faith-
fully represent the model’s decision-making process [1, 13].

Interpretable-by-design algorithms, such as Concept Bottle-
neck Models (CBMs) [7] or Information Pursuit (IP) [2],
address these issues by producing an explanation that is in-
terpretable to users as part of their prediction process.
CBMs use a concept predictor network to map each input
image to a feature vector whose entries measure whether a
human-interpretable concept is present or not in the image.
A linear classifier is then applied to this concept vector to
predict the class, and the concepts with the highest classi-
fier weights are chosen as an explanation for the prediction.
CBMs bring significant advantages relative to post hoc ex-
planation methods in terms of both faithfulness and inter-
pretability. However, their accuracy is hampered by the use
of linear classifiers, which is done to facilitate the selec-
tion of the concepts that form an explanation. In addition,
CBMs require predicting a large number of concepts, all at
once, while in practice very few concepts may be sufficient
to provide an explanation for a prediction. Moreover, CBMs
require a fully annotated dataset to train a concept predictor.
IP addresses these issues by playing a Twenty Questions
game in which very few concepts are queried, one at a time,
until a reliable prediction can be made based on the selected
concepts. Implementing IP requires three ingredients (see
Fig. 1): a querier that selects which concepts to query and
in what order, an answerer that predicts whether a concept
selected by the querier is present or not in the image, and a
classifier that predicts the class from the sequence of query-
answer pairs. IP selects queries whose answers maximize
mutual information with the labels (this requires learning a
generative model and may need an exponential number of
samples [11]), answers the queries using a fully supervised
concept predictor (this requires fully annotated datasets as
for CBMs), and uses a nonlinear network for classification
(which improves classification accuracy relative to CBMs).

List of
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Figure 1. llustration of the IP framework.
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Variational Information Pursuit (VIP) [3] improves IP’s
query selection efficiency by jointly training a querier and
classifier networks so that the querier selects concepts that
best improve the classifier’s accuracy. However, VIP still
uses a fully supervised concept predictor. VIP-ConceptQA
[5] addresses this issue by using CLIP and GPT to generate
pseudo-labels to train a zero-shot concept question answerer
(ConceptQA). However, both VIP and VIP-ConceptQA are
limited to small- to medium-scale tasks, because the querier
and classifier must learn from an exponential number of
query-answer pairs, resulting in a slow training process.

IP-OMP [4] addresses this issue by mapping both the
image to be classified and the query to CLIP space and us-
ing Orthogonal Matching Pursuit (OMP) to select queries.
Specifically, OMP represents the embedded image as a lin-
ear combination of a few embedded queries, those with the
highest CLIP dot products with the embedded image minus
the contribution from prior queries. That is, IP-OMP selects
the queries via sparse coding, bypassing the need to train
a querier. A linear classifier is then trained on the sparse
codes (IP-OMP-SparseCode) or the sequence of CLIP dot
products (IP-OMP-CLIP), both interpreted as zero-shot an-
swers to the queries. In practice, however, these continuous-
valued answers are not interpretable relative to ConceptQA
binary answers. Therefore, IP-OMP is more efficient than
VIP-ConceptQA, but at the cost of reduced interpretability.

In short, existing interpretable-by-design methods either
use inefficient query selection methods (CBM, IP, VIP, VIP-
ConceptQA), or non zero-shot query answering methods
that require huge annotation effort (CBM, IP, VIP) or inac-
curate/uninterpretable zero-shot query answering methods
(IP-OMP), as shown in Table 1.

Table 1. Prior explainable-by-design methods use computationally
intense query selection methods or inaccurate zero-shot answering
methods. Our method (IP-OMP-ConceptQA) combines an effi-
cient query selection method (OMP) with an accurate zero-shot
query answering method (Concept-QA) to improve classification
accuracy when very short explanations are desired.

Efficient Query | Accurate Zero-
Selection? Shot Answers?
CBM [7] No selection Not zero-shot
1P [2] No Not zero-shot
VIP [3] Somewhat Not zero-shot
VIP-ConceptQA [5] | Somewhat Yes
IP-OMP [4] Yes No
IP-OMP-ConceptQA | Yes Yes

Paper contributions. This paper proposes an interpretable-
by-design approach to image classification that com-
bines an efficient query selection method (IP-OMP) with
an accurate and interpretable zero-shot query answering
method (Concept-QA). The proposed approach (IP-OMP-

ConceptQA) outperforms existing methods in scenarios
where very short explanations are desired.

2. Methodology

The proposed IP-OMP-ConceptQA framework is illustrated
in Fig. 2 and consists of a querier (IP-OMP), an answerer
(ConceptQA), and a neural network classifier.

Querier Answerer Classifier
I4 L 7 N Va
Vector Representation Information  \ N\
of Concepts — Pursuit- | I Concept QA | L 5| Network Classifier |
| orthogonat  ——>!  Binary Answers to D |
Vector Representation | ”:,““"'_';5 | \ all queries 1 | cussification |
of Image \ il / ) \ )

Figure 2. Illustration of the [IP-OMP-ConceptQA framework.

2.1. IP-OMP Querier

Queries. An interpretable-by-design framework requires a
set of interpretable queries that are sufficiently adequate and
well-suited to the task at hand. While a querier could select
all possible queries, doing so would decrease interpretabil-
ity due to redundant or non-relevant information. Addition-
ally, works such as Label-free CBMs demonstrate that nar-
rowing down the list of concepts results in better perfor-
mance and interpretability [10]. As a result, this approach
uses a querier, IP-OMP, that selects a concise list of infor-
mative, task-relevant queries to guide the classification pro-
cess, and more importantly, in a time-efficient manner.

IP-OMP. The IP-OMP querier starts with a dictionary of
atoms D = [dy,ds,...,d;] € R™ ", where each atom
d; is the CLIP embedding of the text corresponding to
the jth visual query [4]. For example, the query set for
the CUB200 dataset consists of text descriptions of cer-
tain visual features that could be seen in birds (e.g., “while
feather”, “brown beak”), and the dictionary atoms are their
CLIP embeddings.

To select queries for an given image, IP-OMP represents
the CLIP embedding x € R™ of this image as a sparse
linear combination of the dictionary, i.e., it finds a sparse
vector 8 € R”™ such that:

z = Dg. ey

Then the dictionary atoms that have non-zero coefficients
in (8 represent the queries that are selected for this image.
A greedy algorithm for finding a sparse 3 is Orthogonal
Matching Pursuit (OMP), which alternates between a least-
squares estimation step where 3 is updated given an esti-
mate for its support A, and a support selection step where
the support A is updated given an estimate for (3.
Specifically, the algorithm starts with an empty index set
Ag = 0, i.e., none of the atoms/queries is initially selected.
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Then, at the k-th step, a least-squares estimation step finds
the sparse coefficients as:

Br = argmin ¢ — Da, B3 = (Dx, Day) ' Dy, ()

where D, be the matrix whose columns are those from D
with indices in the current set of indices Ay, C [n]. Note that
we conveniently let the solution be the zero vector when
Ay is empty. Next, a support selection step identifies an
index outside Aj whose corresponding atom has the highest
correlation with the current residual, ry, — Dy, Bk, i.e.:

Jk = arg max (dj, i), 3)

and updates the index set: Agy1 = Ay U {jx}. This process
is repeated until the specified number of atoms has been se-
lected, i.e., the query set length has reached a desired value.

The work of [4] establishes a connection between IP and
OMP. Specifically, [4] shows that under certain distribu-
tional assumptions on the data and the queries, finding the
query whose answer has maximum mutual information with
the random variable to be inferred is equivalent to finding
the query with the highest dot product with the residual up
to a normalization of the dot product. This modified query
selection algorithm is called IP-OMP as combines the best
aspects of IP and OMP: a query selection that is informative
due to IP, and computationally efficient due to OMP.

2.2. ConceptQA Answerer

Once a query has been selected by IP-OMP, an answer for

it needs to be found. The ConceptQA answerer takes both

a query and an image as inputs, and determines whether the

query is true or false based on the image. ConceptQA is

trained using a set of image-concept pseudo-labels gener-
ated from GPT and CLIP using the following steps:

1. For every concept in the query set and image-label pair,
GPT is asked whether the concept is important for deter-
mining the label.

2. If GPT replies “No,” then the pseudo-label for a concept-
image pair is “No.”

3. If GPT replies “Yes”, the dot product between the CLIP
embedding of the concept and the CLIP embedding of
the image is used to determine whether the concept is
present in the image.

2.3. Classifier

Two different classifiers are tested and used to determine the
class of the image: a Linear Classifier (Logistic Regression)
and Network Classifier (Multilayer Perceptron). Both clas-
sifiers operate the sequence of query-answer pairs produced
by ConceptQA and trained using the cross-entropy loss.

3. Experiments and Results

In this section, the proposed IP-OMP-ConceptQA model
is evaluated on three widely used image classification data
sets: CIFAR10 [8], CIFAR100 [8], and CUB200 [15]. The
CIFARI10 data set consists of 60,000 images with 10 classes
of 6,000 images each, including airplanes, cars, birds, cats,
deer, dogs, frogs, horses, ships, and trucks. CIFAR100 is
an extended version of CIFAR 10 with 100 classes and 600
images per class, for a total of 60,000 images, while the
CUB200 data set has 11,788 images of 200 bird categories.
Each model was trained on each data set separately.

Test accuracy versus explanation length. Fig. 3 com-
pares IP-OMP-ConceptQA against four other approaches,
IP-OMP-CLIP, IP-OMP-SparseCode [4], VIP-CLIP [3] and
VIP-ConceptQA [5], on all three datasets using test ac-
curacy vs. explanation length (average number of query-
answer pairs) as the evaluation metric. Notice that IP-
OMP-ConceptQA outperforms all other methods on all data
sets for very short explanation lengths. Specifically, on
CIFAR10, IP-OMP-ConceptQA achieves the highest accu-
racy among all methods for explanation lengths up to six,
and is competitive with VIP-ConceptQA for longer expla-
nations. On CIFAR100, IP-OMP-ConceptQA outperforms
all methods for explanation lengths up to nine, and is still
competitive with VIP-Concept QA for longer explanations,
with a drop in performance of less than 4%. On CUB200,
IP-OMP-ConceptQA maintains superior performance up to
eleven queries, and is competitive with VIP-Concept QA
for longer explanations, with a drop in performance of less
than 6%.

Evaluation of IP-OMP-ConceptQA explanations. Fig. 4
presents a qualitative evaluation of the explanations pro-
duced by IP-OMP-ConceptQA on two images from the
CUB data set. Given an image to be classified, the sequence
of questions selected by IP-OMP, the (binary) answers by
ConceptQA and the (continuous) values of the sparse co-
efficients by IP-OMP, which can be considered as soft an-
swers to the questions, are shown. For each query, a posi-
tive coefficient (yes, the query is present) is shown in green
and a negative coefficient (no, the query is not present) is
shown in red. Notice that the values of the sparse coeffi-
cients are frequently in the range (-0.3,0.3), making it diffi-
cult for humans to interpret whether the concept is present
or not. On the other hand, Concept QA provides binary an-
swers in {—1, 1}, which are easier to interpret for humans.

4. Conclusion

This work presented IP-OMP-ConceptQA, an interpretable-
by-design method that combines an efficient query selec-
tion method (querier) with an accurate zero-shot query an-
swering system (answerer) to produce an interpretable rep-
resentation (sequence of query-answer pairs) for classifica-
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Figure 3. Test accuracy of five algorithms as a function of the num-
ber of query-answer pairs on CIFAR10, CIFAR100 and CUB200.

tion. Experiments on vision data sets showed that [IP-OMP-
ConceptQA outperforms existing methods in terms of accu-
racy, interpretability, faithfulness, and efficiency in scenar-
ios where very short explanations are desired. Specifically,
IP-OMP is better than VIP at selecting queries when the
explanation length is short (small number of query-answer
pairs), and VIP is better than [P-OMP when the explanation
length is long. Regarding answering queries, Concept QA
consistently improves accuracy for both VIP and IP-OMP.
Future work could focus on creating a hybrid algorithm

IP-OMP Queries: Sparse Code Answers: Concept QA Answers:

1. brownish back 027 -1.0 (no)
2. alarge blue-grey bird 029 1.0 (no)
3. alarge, biack spider 0.15 1.0 (no)
4. aseabird

5. asmall songbird 024 1.0 (no)
6. asmall, thrush-like bird 017 -1.0 (no)
7. black feet

8. ablack head, neck, and back

9. large webbed feet
10.  long, black wings 029 1.0 (no)
1. pale brown uppar parts 0.17

12 three toes on each foot 0.27 1.0 (no)
13, awhite body 068 1.0 (no)
14 a brown back and white belly 2 1.0 (no)
15 a dark bive-black upper body -1.0 (no)
16 alargo. whita body 1.0 (no)
17 asmall, bive bird 1.0 (no)
18.  along tail with white stripos 1.0(no)
19, awhite body with gray wings 1.0 (no)

20, yollowish-brown wings 1.0 (no)

IP-OMP Queries:

Sparse Code Answers: Concept QA Answars:
1. ablack or drk groy plumage o

2. alarge bluo-grey bird 023 1.0 (no)
3. alarge, black spider 028 1.0 (no)
4. asoabird o
5. asmall sonpbird 0.28 -1.0 (no)
6. all black coloration 023 1.0 (no)
7. largo wobbod foot o
8. three loes on each foot 0.30 -1.0 (no)
9. whito and black coloration o
10.  white body 0.36 1.0 (no)
1. whito undorail covorts 0
12, whito undorwings 0.16 410 (no)
13. yollowish underparts 0.18 1.0 (no)
14. @ black bill with a yellow tp 1.0 (no)
15, a bluo-gray body 1.0 (no)
16. a dark, glossy bill € 1.0 (no)
17 amod d duck ¢ 1.0 (no)
18. a small, bluo bird € 1.0 (no)
19, whito siripes on tho wings 1.0 (no)

20. yollowish logs 1.0 (no)

Figure 4. ConceptQA and SparseCode explanations for two im-
ages from the CUB data set. The input image is shown on the left,
the queries selected by IP-OMP are shown on the center, and the
answers by SparseCode and ConceptQA are shown on the right.

that would use IP-OMP-ConceptQA for the initial set of
queries and then transition to VIP-ConceptQA for the re-
maining queries. Ideally, this algorithm would combine the
best features of all current algorithms, leading to more effi-
cient, faithful, and accurate predictions.

References

[1] Julius Adebayo, Justin Gilmer, Michael Muelly, lan Good-
fellow, Moritz Hardt, and Been Kim. Sanity checks for
saliency maps. In NeurIPS, 2018. 1

[2] Aditya Chattopadhyay, Stewart Slocum, Benjamin D. Ha-
effele, René Vidal, and Donald Geman. Interpretable by
design: Learning predictors by composing interpretable
queries. [EEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 2022. 1, 2

[3] Aditya Chattopadhyay, Kwan Ho Ryan Chan, Ben-
jamin David Haeffele, Donald Geman, and René Vidal. Vari-
ational information pursuit for interpretable predictions. In
ICLR, 2023. 2,3

[4] Aditya Chattopadhyay, Ryan Pilgrim, and René Vidal. In-

formation maximization perspective of orthogonal matching

pursuit with applications to explainable Al. In NeurIPS,

pages 2956-2990, 2023. 2, 3

Aditya Chattopadhyay, Kwan Ho Ryan Chan, and René Vi-

dal. Bootstrapping variational information pursuit with large

language and vision models for interpretable image classifi-

cation. In ICML, 2024. 2, 3

[6] David Gunning and David Aha. DARPA’s Explainable Ar-
tificial Intelligence (XAI) Program. Al Magazine, 40(2):44—
58,2019. 1

[5

—

ICCV
gprwins

256
257
258
259
260

261

262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284



ICCV ICCV
greees i
ICCV 2025 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

285 [7]1 P. W. et al. Koh. Concept bottleneck models. In Proceedings
286 of Machine Learning Research, 2020. 1, 2

287 [8] A. Krizhevsky and G. Hinton. Learning multiple layers of
288 features from tiny images. Technical report, University of
289 Toronto, 2009. 3

290 [9] S.Lundbergand S.-1. Lee. A unified approach to interpreting
291 model predictions. In NeurIPS, 2017. 1

292 [10] T. etal. Oikarinen. Label-free concept bottleneck models. In
293 ICLR, 2023. 2

294 [11] Ben Poole, Sherjil Ozair, Aaron Van Den Oord, Alex Alemi,
295 and George Tucker. On variational bounds of mutual infor-
296 mation. In ICML, pages 5171-5180, 2019. 1

297 [12] M. T. Ribeiro, S. Singh, and C. Guestrin. Why should i trust
298 you?: Explaining the predictions of any classifier. In Pro-
299 ceedings of the 22nd ACM SIGKDD International Confer-
300 ence on Knowledge Discovery and Data Mining, 2016. 1
301 [13] Cynthia Rudin. Stop explaining black box machine learn-
302 ing models for high stakes decisions and use interpretable
303 models instead. Nature Machine Intelligence, 1(5):206-215,
304 2019. 1

305 [14] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep in-
306 side convolutional networks: Visualising image classifica-
307 tion models and saliency maps. In ICLR, 2013. 1

308 [15] C. et al. Wah. The caltech-ucsd birds-200-2011 dataset.
309 Technical report, California Institute of Technology, 2011.
310 3



	Introduction
	Methodology
	IP-OMP Querier
	ConceptQA Answerer
	Classifier

	Experiments and Results
	Conclusion

