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Abstract

Deep models are “black-box”, meaning that their decision-001
making process is often not transparent to users. To address002
this issue, several post hoc methods have been proposed for003
explaining the model’s predictions. However, post hoc ex-004
planations are often unreliable and not faithful to the model.005
Interpretable-by-design methods, such as Information Pur-006
suit (IP) and its variants, map the input data to a small set of007
interpretable concepts by asking a set of queries, and make008
a prediction based on the sequence of query answers. Such009
models are faithful by design because their predictions are010
based on the explanations, i.e. the sequence of query an-011
swers. However, they require either a very complex algo-012
rithm for selecting which queries to ask or fully annotated013
datasets for training a query-answering system. This paper014
proposes IP-OMP-ConceptQA, an interpretable-by-design015
method that combines an efficient query selection method016
(OMP) with an accurate zero-shot query answering system017
(Concept-QA). Experiments on vision data sets show that018
IP-OMP-ConceptQA outperforms existing methods in terms019
of accuracy, interpretability, faithfulness, and efficiency in020
scenarios where very short explanations are desired.021

1. Introduction022

The lack of transparency of machine learning models has023
raised the question of whether these “black-box” models024
can be trusted [6]. For instance, when using such models025
in healthcare applications, an answer to questions such as026
“Why does a deep neural network classify a tumor detected027
in an MRI as benign or malignant?” can have life-saving028
consequences. In such cases, understanding how a predic-029
tion is made is just as important as achieving high accuracy.030

Related work. Most existing methods for interpreting the031
predictions of a machine learning model are post hoc, i.e.,032
they aim to explain the prediction after it has been made033
[9, 12, 14]. Post hoc explanations typically assign an impor-034
tance score to each input feature which depends on the sen-035
sitivity of the model’s output with respect to each feature.036
However, such explanations often do not reliably or faith-037
fully represent the model’s decision-making process [1, 13].038

Interpretable-by-design algorithms, such as Concept Bottle- 039
neck Models (CBMs) [7] or Information Pursuit (IP) [2], 040
address these issues by producing an explanation that is in- 041
terpretable to users as part of their prediction process. 042

CBMs use a concept predictor network to map each input 043
image to a feature vector whose entries measure whether a 044
human-interpretable concept is present or not in the image. 045
A linear classifier is then applied to this concept vector to 046
predict the class, and the concepts with the highest classi- 047
fier weights are chosen as an explanation for the prediction. 048
CBMs bring significant advantages relative to post hoc ex- 049
planation methods in terms of both faithfulness and inter- 050
pretability. However, their accuracy is hampered by the use 051
of linear classifiers, which is done to facilitate the selec- 052
tion of the concepts that form an explanation. In addition, 053
CBMs require predicting a large number of concepts, all at 054
once, while in practice very few concepts may be sufficient 055
to provide an explanation for a prediction. Moreover, CBMs 056
require a fully annotated dataset to train a concept predictor. 057

IP addresses these issues by playing a Twenty Questions 058
game in which very few concepts are queried, one at a time, 059
until a reliable prediction can be made based on the selected 060
concepts. Implementing IP requires three ingredients (see 061
Fig. 1): a querier that selects which concepts to query and 062
in what order, an answerer that predicts whether a concept 063
selected by the querier is present or not in the image, and a 064
classifier that predicts the class from the sequence of query- 065
answer pairs. IP selects queries whose answers maximize 066
mutual information with the labels (this requires learning a 067
generative model and may need an exponential number of 068
samples [11]), answers the queries using a fully supervised 069
concept predictor (this requires fully annotated datasets as 070
for CBMs), and uses a nonlinear network for classification 071
(which improves classification accuracy relative to CBMs). 072

Figure 1. Illustration of the IP framework.

1



ICCV
#*****

ICCV
#*****

ICCV 2025 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Variational Information Pursuit (VIP) [3] improves IP’s073
query selection efficiency by jointly training a querier and074
classifier networks so that the querier selects concepts that075
best improve the classifier’s accuracy. However, VIP still076
uses a fully supervised concept predictor. VIP-ConceptQA077
[5] addresses this issue by using CLIP and GPT to generate078
pseudo-labels to train a zero-shot concept question answerer079
(ConceptQA). However, both VIP and VIP-ConceptQA are080
limited to small- to medium-scale tasks, because the querier081
and classifier must learn from an exponential number of082
query-answer pairs, resulting in a slow training process.083

IP-OMP [4] addresses this issue by mapping both the084
image to be classified and the query to CLIP space and us-085
ing Orthogonal Matching Pursuit (OMP) to select queries.086
Specifically, OMP represents the embedded image as a lin-087
ear combination of a few embedded queries, those with the088
highest CLIP dot products with the embedded image minus089
the contribution from prior queries. That is, IP-OMP selects090
the queries via sparse coding, bypassing the need to train091
a querier. A linear classifier is then trained on the sparse092
codes (IP-OMP-SparseCode) or the sequence of CLIP dot093
products (IP-OMP-CLIP), both interpreted as zero-shot an-094
swers to the queries. In practice, however, these continuous-095
valued answers are not interpretable relative to ConceptQA096
binary answers. Therefore, IP-OMP is more efficient than097
VIP-ConceptQA, but at the cost of reduced interpretability.098

In short, existing interpretable-by-design methods either099
use inefficient query selection methods (CBM, IP, VIP, VIP-100
ConceptQA), or non zero-shot query answering methods101
that require huge annotation effort (CBM, IP, VIP) or inac-102
curate/uninterpretable zero-shot query answering methods103
(IP-OMP), as shown in Table 1.104

Table 1. Prior explainable-by-design methods use computationally
intense query selection methods or inaccurate zero-shot answering
methods. Our method (IP-OMP-ConceptQA) combines an effi-
cient query selection method (OMP) with an accurate zero-shot
query answering method (Concept-QA) to improve classification
accuracy when very short explanations are desired.

Efficient Query
Selection?

Accurate Zero-
Shot Answers?

CBM [7] No selection Not zero-shot
IP [2] No Not zero-shot

VIP [3] Somewhat Not zero-shot
VIP-ConceptQA [5] Somewhat Yes

IP-OMP [4] Yes No
IP-OMP-ConceptQA Yes Yes

Paper contributions. This paper proposes an interpretable-105
by-design approach to image classification that com-106
bines an efficient query selection method (IP-OMP) with107
an accurate and interpretable zero-shot query answering108
method (Concept-QA). The proposed approach (IP-OMP-109

ConceptQA) outperforms existing methods in scenarios 110
where very short explanations are desired. 111

2. Methodology 112

The proposed IP-OMP-ConceptQA framework is illustrated 113
in Fig. 2 and consists of a querier (IP-OMP), an answerer 114
(ConceptQA), and a neural network classifier. 115

Figure 2. Illustration of the IP-OMP-ConceptQA framework.

2.1. IP-OMP Querier 116

Queries. An interpretable-by-design framework requires a 117
set of interpretable queries that are sufficiently adequate and 118
well-suited to the task at hand. While a querier could select 119
all possible queries, doing so would decrease interpretabil- 120
ity due to redundant or non-relevant information. Addition- 121
ally, works such as Label-free CBMs demonstrate that nar- 122
rowing down the list of concepts results in better perfor- 123
mance and interpretability [10]. As a result, this approach 124
uses a querier, IP-OMP, that selects a concise list of infor- 125
mative, task-relevant queries to guide the classification pro- 126
cess, and more importantly, in a time-efficient manner. 127

IP-OMP. The IP-OMP querier starts with a dictionary of 128
atoms D = [d1, d2, . . . , dj ] ∈ Rm×n, where each atom 129
dj is the CLIP embedding of the text corresponding to 130
the jth visual query [4]. For example, the query set for 131
the CUB200 dataset consists of text descriptions of cer- 132
tain visual features that could be seen in birds (e.g., “while 133
feather”, “brown beak”), and the dictionary atoms are their 134
CLIP embeddings. 135

To select queries for an given image, IP-OMP represents 136
the CLIP embedding x ∈ Rm of this image as a sparse 137
linear combination of the dictionary, i.e., it finds a sparse 138
vector β ∈ Rn such that: 139

x ≈ Dβ. (1) 140

Then the dictionary atoms that have non-zero coefficients 141
in β represent the queries that are selected for this image. 142
A greedy algorithm for finding a sparse β is Orthogonal 143
Matching Pursuit (OMP), which alternates between a least- 144
squares estimation step where β is updated given an esti- 145
mate for its support Λ, and a support selection step where 146
the support Λ is updated given an estimate for β. 147

Specifically, the algorithm starts with an empty index set 148
Λ0 = ∅, i.e., none of the atoms/queries is initially selected. 149
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Then, at the k-th step, a least-squares estimation step finds150
the sparse coefficients as:151

βk = argmin
β

∥x−DΛk
βk∥22 = (D⊤

Λk
DΛk

)−1D⊤
Λk

x , (2)152

where DΛk
be the matrix whose columns are those from D153

with indices in the current set of indices Λk ⊂ [n]. Note that154
we conveniently let the solution be the zero vector when155
Λk is empty. Next, a support selection step identifies an156
index outside Λk whose corresponding atom has the highest157
correlation with the current residual, rk −DΛk

βk, i.e.:158

jk = argmax
j

|⟨dj , rk⟩| , (3)159

and updates the index set: Λk+1 = Λk ∪{jk}. This process160
is repeated until the specified number of atoms has been se-161
lected, i.e., the query set length has reached a desired value.162

The work of [4] establishes a connection between IP and163
OMP. Specifically, [4] shows that under certain distribu-164
tional assumptions on the data and the queries, finding the165
query whose answer has maximum mutual information with166
the random variable to be inferred is equivalent to finding167
the query with the highest dot product with the residual up168
to a normalization of the dot product. This modified query169
selection algorithm is called IP-OMP as combines the best170
aspects of IP and OMP: a query selection that is informative171
due to IP, and computationally efficient due to OMP.172

2.2. ConceptQA Answerer173

Once a query has been selected by IP-OMP, an answer for174
it needs to be found. The ConceptQA answerer takes both175
a query and an image as inputs, and determines whether the176
query is true or false based on the image. ConceptQA is177
trained using a set of image-concept pseudo-labels gener-178
ated from GPT and CLIP using the following steps:179

1. For every concept in the query set and image-label pair,180
GPT is asked whether the concept is important for deter-181
mining the label.182

2. If GPT replies “No,” then the pseudo-label for a concept-183
image pair is “No.”184

3. If GPT replies “Yes”, the dot product between the CLIP185
embedding of the concept and the CLIP embedding of186
the image is used to determine whether the concept is187
present in the image.188

2.3. Classifier189

Two different classifiers are tested and used to determine the190
class of the image: a Linear Classifier (Logistic Regression)191
and Network Classifier (Multilayer Perceptron). Both clas-192
sifiers operate the sequence of query-answer pairs produced193
by ConceptQA and trained using the cross-entropy loss.194

3. Experiments and Results 195

In this section, the proposed IP-OMP-ConceptQA model 196
is evaluated on three widely used image classification data 197
sets: CIFAR10 [8], CIFAR100 [8], and CUB200 [15]. The 198
CIFAR10 data set consists of 60,000 images with 10 classes 199
of 6,000 images each, including airplanes, cars, birds, cats, 200
deer, dogs, frogs, horses, ships, and trucks. CIFAR100 is 201
an extended version of CIFAR 10 with 100 classes and 600 202
images per class, for a total of 60,000 images, while the 203
CUB200 data set has 11,788 images of 200 bird categories. 204
Each model was trained on each data set separately. 205

Test accuracy versus explanation length. Fig. 3 com- 206
pares IP-OMP-ConceptQA against four other approaches, 207
IP-OMP-CLIP, IP-OMP-SparseCode [4], VIP-CLIP [3] and 208
VIP-ConceptQA [5], on all three datasets using test ac- 209
curacy vs. explanation length (average number of query- 210
answer pairs) as the evaluation metric. Notice that IP- 211
OMP-ConceptQA outperforms all other methods on all data 212
sets for very short explanation lengths. Specifically, on 213
CIFAR10, IP-OMP-ConceptQA achieves the highest accu- 214
racy among all methods for explanation lengths up to six, 215
and is competitive with VIP-ConceptQA for longer expla- 216
nations. On CIFAR100, IP-OMP-ConceptQA outperforms 217
all methods for explanation lengths up to nine, and is still 218
competitive with VIP-Concept QA for longer explanations, 219
with a drop in performance of less than 4%. On CUB200, 220
IP-OMP-ConceptQA maintains superior performance up to 221
eleven queries, and is competitive with VIP-Concept QA 222
for longer explanations, with a drop in performance of less 223
than 6%. 224

Evaluation of IP-OMP-ConceptQA explanations. Fig. 4 225
presents a qualitative evaluation of the explanations pro- 226
duced by IP-OMP-ConceptQA on two images from the 227
CUB data set. Given an image to be classified, the sequence 228
of questions selected by IP-OMP, the (binary) answers by 229
ConceptQA and the (continuous) values of the sparse co- 230
efficients by IP-OMP, which can be considered as soft an- 231
swers to the questions, are shown. For each query, a posi- 232
tive coefficient (yes, the query is present) is shown in green 233
and a negative coefficient (no, the query is not present) is 234
shown in red. Notice that the values of the sparse coeffi- 235
cients are frequently in the range (-0.3,0.3), making it diffi- 236
cult for humans to interpret whether the concept is present 237
or not. On the other hand, Concept QA provides binary an- 238
swers in {−1, 1}, which are easier to interpret for humans. 239

4. Conclusion 240

This work presented IP-OMP-ConceptQA, an interpretable- 241
by-design method that combines an efficient query selec- 242
tion method (querier) with an accurate zero-shot query an- 243
swering system (answerer) to produce an interpretable rep- 244
resentation (sequence of query-answer pairs) for classifica- 245
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Figure 3. Test accuracy of five algorithms as a function of the num-
ber of query-answer pairs on CIFAR10, CIFAR100 and CUB200.

tion. Experiments on vision data sets showed that IP-OMP-246
ConceptQA outperforms existing methods in terms of accu-247
racy, interpretability, faithfulness, and efficiency in scenar-248
ios where very short explanations are desired. Specifically,249
IP-OMP is better than VIP at selecting queries when the250
explanation length is short (small number of query-answer251
pairs), and VIP is better than IP-OMP when the explanation252
length is long. Regarding answering queries, Concept QA253
consistently improves accuracy for both VIP and IP-OMP.254

Future work could focus on creating a hybrid algorithm255

Figure 4. ConceptQA and SparseCode explanations for two im-
ages from the CUB data set. The input image is shown on the left,
the queries selected by IP-OMP are shown on the center, and the
answers by SparseCode and ConceptQA are shown on the right.

that would use IP-OMP-ConceptQA for the initial set of 256
queries and then transition to VIP-ConceptQA for the re- 257
maining queries. Ideally, this algorithm would combine the 258
best features of all current algorithms, leading to more effi- 259
cient, faithful, and accurate predictions. 260
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