

Very Short and Accurate Explanations by Design

Prisha Shroff, Hancheng Min, René Vidal

University of Pennsylvania

Introduction

- The lack of transparency of "black-box" models raises the question of whether their predictions can be trusted
- Existing explainable AI methods:

Post-Hoc

Interpretable-by-design methods

- Aim to explain the prediction after it has been made.
- Do not reliably or faithfully represent the model's decision-making process
- Map the input image to a set of interpretable
- concepts from which a prediction is made
 Concept Bottleneck Models use a linear predictor reducing accuracy and interpretability
- Information Pursuit (IP) [1] is an explainable-by-design method based on selecting a small set of most informative concepts that are sufficient for prediction.
- Implementing IP requires three ingredients:

Querier

Answerer

Classifier

All-purpose Bill

Jpperparts Colo

Throat Color

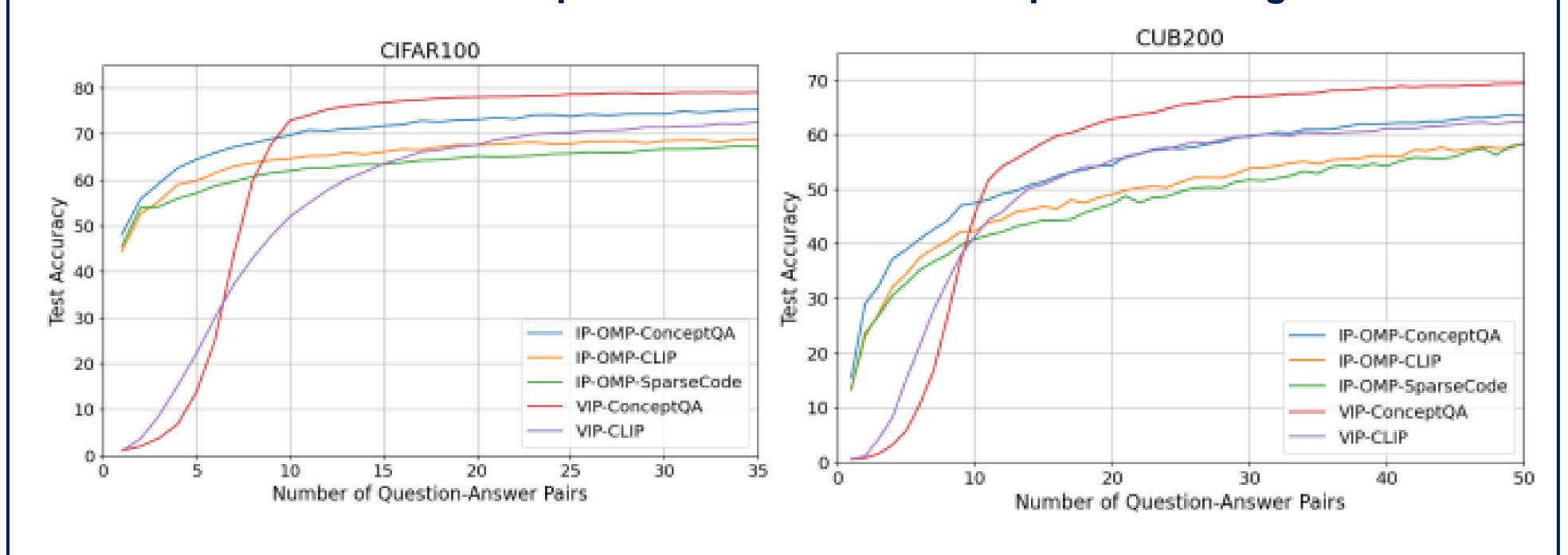
Breast Color Belly Color

Belly Color

- Selects which concepts to query and in what order
- Predicts whether a concept selected by the querier is present in the image
- Predicts the class from the sequence of queryanswer pairs
- Existing IP-based models use either an inefficient querier, or a non-zero shot and inaccurate answerer

querier, or a morrizero snot and maccurate answerer		
Current Approaches	Efficient Query Selection?	Accurate Zero- Shot Answers?
Concept Bottleneck Models (CBMs)	No selection	Not zero-shot
Information Pursuit (IP) [1]	No	Not zero-shot
Variational Information Pursuit (VIP) [2]	Somewhat	Not zero-shot
Variational Information Pursuit - Concept Question Answering Network (VIP-Concept QA) [3]	Somewhat	Yes
Information Pursuit - Orthogonal Matching Pursuit (IP-OMP) [4]	Yes	No
Information Pursuit- Orthogonal Matching Pursuit- Concept Question Answering Network (IP-OMP- Concept QA)	Yes	Yes

• IP-OMP uses OMP in CLIP embedding space to represent an image as a sparse code of a few queries, and bypasses the need to train a separate querier

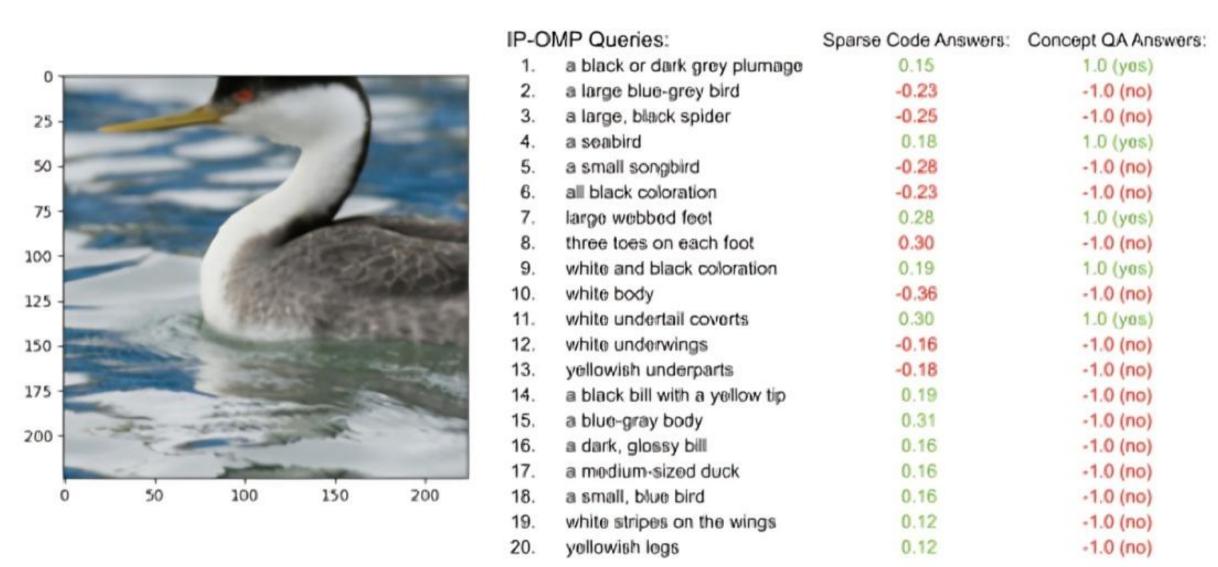

Concepts Queries Answer pairs Perceptron Network Predicted Bird Species: Binary Answers Yes Yes Yes Yes No Wes No

Experimental Results

6. Is the breast color black?

7. Is the belly color olive?

IP-OMP-ConceptQA is better for short explanation lengths


- When #queries < 9, IP-OMP-ConceptQA outperforms all other methods
- When #queries > 9, IP-OMP-Concept QA is competitive with VIP-Concept QA (drop of accuracy is less than 4%)
- When #queries < 11, IP-OMP-ConceptQA performs the **best** against all algorithms

Green Jay

 IP-OMP-Concept QA is competitive with VIP-Concept QA (drop of accuracy is less than 6%)

Qualitative Evaluation of Explanations

- A positive coefficient (yes, the query is present) is shown in green and a negative coefficient (no, the query is not present) is shown in red.
- Sparse coefficients (answers from IP-OMP) are between (-0.3,0.3), making it uninterpretable
- Concept QA provides binary answers in {-1,1), which are interpretable

Paper Contributions

- Developed IP-OMP-ConceptQA
- Interpretable-by-design method
- Efficient query selection method (querier)
- Accurate zero-shot answering system (answerer)
- Produces an interpretable representation (sequence of query-answer pairs) for classification
- P-OMP-ConceptQA outperforms existing methods in scenarios where very short explanations are desired

References

- [1] Chattopadhyay et al. Interpretable by design: Learning predictors by composing interpretable queries. TPAMI 2022. [2] Chattopadhyay et al. Variational Information Pursuit for Interpretable Predictions, ICLR 2023.
- [3] Chattopadhyay et al. Bootstrapping Variational Information Pursuit with Foundation Models for Interpretable Image Classification. ICLR 2024.
- [4] Chattopadhyay et al. Information Maximization Perspective of Orthogonal Matching Pursuit with Applications to Explainable Al. NeurIPS 2023.