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Abstract

Recent studies demonstrate that large language mod-
els with vision capabilities (VLMs), e.g., GPT-4o and
Gemini-1.5 Pro, struggle with low-level vision tasks
that are easy to humans. Specifically, on BlindTest,
the suite of 7 very simple tasks, including identifying (a)
whether two circles overlap; (b) how many times two lines
intersect; (c) which letter is being circled in a word; and (d)
the number of circles in an Olympic-like logo, four state-of-
the-art VLMs are only 58.07% accurate, on average. In
this work, we investigate the potential reasons behind this
phenomenon. We find that VLMs, including slow-thinking
models, consistently struggle with those tasks that require
precise spatial information when geometric primitives over-
lap or are close. Yet, VLMs perform at near-100% accuracy
when much more space is added to separate shapes and let-
ters. Linear probing experiments show that vision encoders
contain sufficient visual information to solve BlindTest
and that language models fail to decode this information
into correct answers.

1. Introduction

Exploring the visual shortcomings of large language mod-
els with vision capabilities (VLMs) has revealed surprising
findings recently [15, 18, 19]. Specifically, VLMs strug-
gle to perform at near-human accuracy on simple visual
tasks, e.g., the best performing VLM on BlindTest [15],
i.e., Sonnet-3.5, performs at 77.84% accuracy. Since
common image-text benchmarks [8, 11, 21] fail to cap-
ture VLMs’ true visual capabilities [4], we hypothesize that
these shortcomings lie in their visual perception abilities.

In this work, we aim to explore the low-level visual
abilities of VLMs inspired by [15]. Specifically, we
test four state-of-the-art (SotA) VLMs: GPT-4o [12],
Gemini-1.5 Pro [16], Claude-3 Sonnet [3], and
Claude-3.5 Sonnet [2] on simplified versions of tasks

from BlindTest [15], which includes simple visual tasks
that involve only 2D geometric primitives (e.g., lines and
circles) [6] and require minimal world knowledge. We
also investigate the impact of slow-thinking capabilities on
vision-centric tasks from [15]. Our findings show that the
reasoning process in these models is not sufficient to per-
form better on primitive visual tasks. Moreover, we conduct
a linear probe experiment on 2 tasks from BlindTest,
i.e., a) counting line intersection and b) identifying whether
two circles touch, using open-source VLMs to find if the
necessary information for solving these tasks exists at var-
ious stages of the VLM. Similar to the human visual cog-
nitive system [9, 13], VLMs follow a common late-fusion
architecture, connecting “eyes”, i.e., pre-trained vision en-
coders, to a talking brain, i.e., a pre-trained LLM (see
Fig. 5). Thus, we contrast our findings at each stage in
VLMs with the reported performance on BlindTest to
test our hypothesis.

2. Experiments and Results

We evaluate VLMs in 3 different categories: (1)
commercial, (2) open-source, and (3) slow-thinking.
In commercial models, we test GPT-4o ( ),
Gemini-1.5 Pro ( Gemini-1.5), Claude-3
Sonnet ( Sonnet-3), and Claude-3.5 Sonnet
( Sonnet-3.5).
Open-source We also test 8 open-source
models from three different families: LLaVA
OneVision-qwen2 ( LLaVA-OneV) [10],
Phi-3.5-vision-instruct ( Phi-3.5) [1],
and InternVL-2 ( ) [5].
Slow-thinking We test 2 slow-thinking models and
their regular counterparts: (1) closed-source Gemini
2.0 Flash-Thinking and Gemini 2.0 Flash,
(2) open-source QVQ-Preview (QVQ) and Qwen2-VL
[17, 20], to evaluate the impacts of slow and iterative think-
ing on BlindTest.
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GPT-4o Gemini-1.5 Sonnet-3 Sonnet-3.5
a: How many times do the blue and red lines touch each other? Answer with a number in curly brackets, e.g., {5}.
b: Are the two circles overlapping? Answer with Yes/No.
c: Which character is being highlighted with a red oval? Please provide your answer in curly brackets, e.g., {a}
d: How many circles are in the image? Answer with only the number in numerical format.
e: How many single-color paths go from A to D? Answer with a number in curly brackets, e.g., {3}.

Figure 1. VLMs fail on the simple tasks of BlindTest.

Table 1. The mean accuracy (%) of all closed-source VLMs over
7 BlindTest tasks is 58.07%. * Two smallest VLMs used in
linear probing experiments.

a. b. c. d. e. f. g. h. i.

Model Size ### DDD
A

B

C

D Task mean

Random 33.33 50.00 5.77 20.00 20.00 25.00 4.55 33.33 24.00

GPT-4o n/a 41.61 75.91 74.23 41.25 20.21 55.83 39.58 53.19 50.23
Gemini-1.5 n/a 66.94 93.62 83.29 20.25 24.17 87.08 39.39 53.13 58.48
Sonnet-3 n/a 43.41 86.46 72.06 29.79 1.87 65.00 36.17 31.11 45.73
Sonnet-3.5 n/a 75.36 90.82 87.88 66.46 77.71 92.08 74.26 58.19 77.84

Mean 56.84 86.70 79.36 39.44 30.99 74.99 47.35 48.90 58.07

Open-souce VLMs

LLaVA-OneV-ov 72B 45.83 90.92 44.71 20.00 11.74 87.07 8.95 58.06 45.92
LLaVA-OneV-si 72B 45.33 83.48 38.14 20.00 11.46 57.50 10.23 48.06 38.41
LLaVA-OneV-ov 7B 48.17 83.93 42.79 20.00 7.29 42.92 21.02 47.22 39.17
LLaVA-OneV-si 7B 44.50 84.67 40.22 20.00 7.29 58.75 14.01 55.00 40.00
LLaVA-OneV-ov 0.5B 17.28 75.07 9.78 12.50 9.58 20.42 0.38 5.56 18.82
LLaVA-OneV-si * 0.5B 33.14 73.21 6.25 27.29 2.50 14.58 1.13 26.11 23.03
InternVL-2 8B 47.28 91.00 57.69 20.00 13.96 28.33 7.57 60.28 40.76
Phi-3.5 * 4.2B 37.78 83.63 16.51 18.75 11.46 32.50 11.74 19.72 29.01

2.1. VLMs read out circled letter better when spac-
ing between letters increases

Rahmanzadehgervi et al. [15] find that reading out which
letter is being circled (Fig. 1c) in a word is a challenging
task for VLMs (mean model accuracy: 79.7%; Tab. 1c).
They report that When the letters are close together,
VLMs often predict letters adjacent to the one being cir-
cled (Fig. 1c).

Here, we add 1 to 3 ASCII space characters between
adjacent letters of a string (Fig. 2a) to evaluate VLMs to
test the adjacency hypothesis. All VLMs consistently per-
form better when there is ≥1 extra space between charac-
ters (Fig. 2b). However, the accuracy increase (△) varies
across models. For instance, and accuracies increase
by over +20 points to 92% and 72% from 72% and 46%, re-
spectively (Fig. 2b). Out of 4 tested VLMs, Sonnet-3.5
reaches the highest accuracy of 95% when there are 3 extra
spaces between letters (Fig. 2a). Qualitatively, the remain-
ing 5% error (40 samples) includes: (1) 12 mispredictions
of adjacent letters and (2) 13 instances of confusing the red
circle as part of the letter, e.g., ‘@’ for ‘a’, and (3) 15 cases
of predicting ‘g’ instead of ‘q’.
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Figure 2. (a) By adding more space ∈ {1, 2, 3} to baseline images
in the circled letter task, we create a simpler version of them. (b)
VLMs generally perform better when there is ≥1 space between
letters of the words (△ for Sonnet-3 and GPT-4o is +21 and
+13 from 0 to 3 spaces, respectively).

2.2. VLMs count shapes more accurately when
more spacing is added between shapes

On counting overlapping circles and pentagons, in
BlindTest, VLMs’ mean accuracy is 39.44% and
30.99% respectively (Tab. 1d–e). Inspired by the results
that VLMs read out circled letters better when there is
more space between letters, here, we study the effects of
increasing the space between shapes, in counting overlap-
ping shapes, for both ### and DDD (Fig. 1d). We test
whether reducing the overlap area between shapes would
improve VLM accuracy in counting them. Specifically, we
increase the boundary-to-boundary distance between cir-
cles in the original images along the X and Y directions
is ∈ {dx × ϕ

2 , dy × ϕ
2 }, where ϕ is the diameter of the

circles and dx and dy are multipliers (see Fig. 3a). For cir-
cles, we increase dx and dy. For pentagons, we increase the
boundary-to-boundary distance of {d× dx, d× dy} where
d is the side length of the pentagons (see Fig. 3b).

VLMs, in general, can count shapes more accurately
when there is no overlapping area between shapes (Fig. 3c).
Yet, the accuracy increases vary between models. For ex-
ample, both Sonnet-3 and Sonnet-3.5 reach ≥96%
(Fig. 3c; dx = 0.75). Similarly, 72B-LLaVA-OneV ( )
achieves 72% accuracy on counting disjoint circles (Fig. 3c;
dx = 0.75). This shows that most VLMs struggle to
count the shapes in the baseline images (Fig. 3c; dy = −1
and dx = 0.1) because they overlap. All closed-source
VLMs, except for Gemini-1.5, consistently benefit from
increasing the distance along both directions in counting
overlapping shapes. The most significant improvement is
for Sonnet-3 with △=91% and the least is for GPT-4o
with △=22% (Fig. 3c-ii).

2.3. VLMs can count simplified, more straight paths
Overall, VLMs perform poorly at a mean accuracy of
48.90% (Tab. 1h) on counting the single-colored paths.
Here, we investigate whether VLMs are not able to count
in general or whether the zigzag patterns of paths (Fig. 1e)
pose the main challenge to them.
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Figure 3. (a) We reduce the overlap area between circles by in-
creasing the boundary-to-boundary distances along the X and Y
axes, i.e., dx × ϕ

2
and dy × ϕ

2
, respectively. (b) We increase the

boundary-to-boundary distances between pentagons along the X
and Y axes, i.e., d × dx and d × dy, respectively. (c) As we in-
crease the distance between the shapes along the X and Y axes for
both circles and pentagons, VLMs’ accuracy improves. For exam-
ple, Sonnet-3.5 ( ) accuracy increases (i) from 0.66 to 1.0 on
### and (ii) from 0.78 to 1.0 onDDD.

We re-render the images by forcing each path to have
fewer 90◦ turns than the baseline. The baseline images
(Fig. 1e) are generated by choosing a direction on a grid
using a random depth-first algorithm, where the probability
(P ) of choosing a straight direction is 0.33. Therefore, we
gradually increase the P from the baseline (P=0.33) to 0.6
and 0.9, such that it yields images with fewer intersections
and turns (Fig. 4a).

On average, all VLMs more accurately count the single-
colored paths when there are fewer turns, i.e., as P increases
(see Fig. 4b). This indicates that SotA VLMs mostly strug-
gle to count the paths in original images due to the visual
complexity of zigzag patterns of paths and their intersec-
tion. Analyzing the accuracy by the number of paths con-
nected to each station, we find that some VLMs even score
near-100 accuracy (e.g., 0.95, 0.99, and 0.95 for , , and

, respectively, at P = 0.9; Fig. 4). This substantially
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Figure 4. We increase the probability P of choosing a straight next
move (as opposed to making a turn) and generate two simplified
versions of subway-like maps (a). As we increase the probability
P from 0.33 to 0.6 and 0.9 (b), some VLMs can reach a near-
perfect accuracy (0.99 for Gemini-1.5 on 1 path).

better accuracy on simplified images is in stark contrast to
the poor accuracy reported for the original subway maps
(P = 0.33), confirming that the visual complexity of the
paths poses challenges to VLMs.

2.4. The vision encoders in smaller open-source
VLMs can extract sufficient information to
solve BlindTest

Here, we question whether VLMs can “see” the key vi-
sual information in BlindTest images, e.g., the gap
between two circles in order to decide whether they
overlap. Specifically, we run linear probing experiments
to test whether the visual encoders of the smallest open-
source VLMs can extract sufficient information for solving
BlindTest.

Models We select two models from SotA open-source
VLM, 0.5B LLaVA-OneV-S ( ) and 4.2B Phi-3.5
( ) for two reasons. First, these two VLMs use the two
most common vision encoders (VEs)— uses SigLIP [22]
while uses CLIP [14]. That is, our findings on these
two VEs would generalize to most VLMs. Second, and

are among the smallest VLMs, and therefore, if their VEs
contain sufficient information, the same is likely true with
larger and commercial VLMs.

Tasks We choose (1) the two circles ( ) and (2) the
counting line-intersections ( ) for this experiment be-
cause they represent arguably the simplest images and ques-
tions in BlindTest—the two circles and the line intersec-
tions tasks are 2-way and 3-way classification problems.

Method We average-pool the image-patch features at the
layer right before the projection layer (Fig. 5). Then, we
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Figure 5. We train a linear-probing classifier on the frozen features
extracted from the (1) vision encoder and the (2) projection layer
for the two circles and the line chart tasks separately.
Evaluating the linear classifiers shows that the information neces-
sary to solve these two tasks exists before and after the projection
layer, but is lost in the LLM, resulting in poor VLM accuracy in
Tab. 1.

train a logistic-regression linear classifier on top of the
frozen features on each task. For completeness, we repeat
the experiment for the layer right after the projection layer
to understand the impact of the projection layer.

Results The linear-probing accuracy of the CLIP features,
before projection layer, in is ≥ 99.47% on both tasks
(Tab. 2). This suggests that the necessary low-level infor-
mation to solve these tasks is preserved in CLIP. Similarly,
the same conclusion holds for the VE in , a variant of
SigLIP, that performs 100% on both tasks (Tab. 2). More-
over, using the frozen features after the projection layer
in both and yields a linear classification accuracy of
≥ 99.58% on both tasks (Tab. 2). This result shows that
most visual information from VEs is preserved before and
after the projection layer. Contrasting these high linear-
classification VE accuracy scores with fairly lower accu-
racy of both VLMs on BlindTest (see Tab. 2; rightmost
column), we conclude that the language models in these
VLMs have access to the necessary visual information
to solve BlindTest tasks but fail to decode it into cor-
rect language outputs.

2.5. Long-inference, slow-thinking VLMs also per-
form poorly like regular VLMs on BlindTest

From math to coding, spending more time thinking be-
fore responding enables LLMs to perform substantially bet-
ter in many tasks [7]. Here, we aim to test whether such
slow thinking also enables VLMs to perform better on
BlindTest where we argue that reasoning in the text

Table 2. The output features from the vision encoders right before
(a) the projection layer in LLaVA-OneV-S ( ) and Phi-3.5
( ), i.e., CLIP and SigLIP, respectively, contain sufficient infor-
mation to solve the and (linear-probing accuracy is ≥
99.47%). The same conclusion holds for after (b) the projection
layer. However, the language model in these VLMs fails to decode
this information into correct answers, resulting in poor accuracy
on the tasks (c).

(a) Before (b) After (c) VLM

Model

99.47 99.82 99.58 99.73 33.14 73.21
100.0 100.0 100.0 100.0 37.78 83.63

Table 3. SOTA slow-thinking models (bottom) perform even
worse than their regular counterpart (top) BlindTest, showing
that the longer inference has no positive impact on BlindTest
tasks. QVQ is the slow-thinking counterpart of Qwen2-VL.

Model Size ### DDD
A

B

C

D Task mean

Gemini 2.0 Flash n/a 85.44 80.95 81.73 55.62 44.16 96.25 66.85 70.97 72.75
Qwen2-VL 72B 64.97 76.41 73.56 28.12 35.42 74.58 20.64 59.31 54.13

Gemini 2.0 Flash-Thinking n/a 77.50 88.24 74.03 47.92 57.08 93.75 70.45 63.75 71.59
QVQ 72B 37.05 67.26 51.60 29.58 26.66 53.75 36.74 37.22 42.48

space might not help as our tasks are, by design, visual
only. We run 2 SOTA slow-thinking VLMs: Gemini 2.0
Flash-Thinking and QVQ on BlindTest, and com-
pare them with their non-thinking, regular versions, i.e.,
Gemini 2.0 Flash and Qwen2-VL.

On average, over 7 tasks, Gemini 2.0
Flash-Thinking, is on par with its non-thinking
counterpart, Gemini 2.0 Flash (Tab. 3; 71.59 vs
72.75%). This shows that the “slow-thinking” capability
(i.e., long, scaled-up inference) does not address the main
challenge that BlindTest poses to VLMs. Qualita-
tively examining the thinking tokens of Gemini 2.0
Flash-Thinking shows that the hidden thoughts are in
text space and have no benefits on BlindTest. Similarly,
QVQ, the SOTA open-source slow-thinking model, is -11.65
points behind its non-thinking counterpart, Qwen2-VL
(Tab. 3).

3. Discussion and Conclusion
We explore the reasons behind VLMs’ poor performance on
simple visual tasks from BlindTest [15]. We generate
simpler versions of the tasks by gradually reducing the vi-
sual complexity of the images, e.g., overlapping area, space
between letters, and number of turns and intersections. Our
findings show that as the images get more crowded, VLMs
fail more often. Moreover, by conducting a linear probe ex-
periment on 2 common vision encoders of VLMs, we find
that the information necessary to solve these tasks is pre-
served in their representation, and the language model fails
to translate it to words.
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