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What could go wrong?

Discovering and describing failure modes in computer vision

Gabriela Csurka, Tyler L. Hayes, Diane Larlus, Riccardo Volpi

Summary Contribution #1: Problem Formulation

< We formalize Language-Based Error Explainability (LBEE) Given a target set X and a model Mgy, our goal is to find
sentences describing likely failure causes for the model
<+ We propose a family of task agnhostic methods to tackle LBEE
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<+ We introduce a set of metrics to evaluate LBEE performance bradefined sentence set Predefmed margin
Model average performance Model average

<+ We show the effectiveness of the proposed methods on various tasks on images relevant to s, oerformance on X

Contribution #2: A Family of Methods
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Contribution #3: Evaluation Metrics Experimental Setup
Given a hard cluster c? and set of selected sentences R{’ Tasks and datasets:
% Hardness ratio (HR): ratio of sentences pointing to reasons for model failure % Urban scene segmentation: ACDC, IDD, WD2
< Correctness Ratio (CR): average ratio of images that are relevant to Classification with spurious correlations: NICO75/85/95
individual sentences 0:* ImageNet-1K classification
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; l " ‘ < TopS: top ranked sentences based on cosine similarity

Given Sﬁ* and the overall output (Rg =U R} < PDiff: rank based on prototype difference

» True positive rate (TPR): evaluates how well S; is covered i FPD'ff‘ Pdift filtered W'Fh Tops

» Jaccard Index (J1): measures coverage while penalizing false positives * SetDiff: Sentence set differences.

I 5 N Ry JI = Sp N Rs Default design choices:
‘SE‘ Sg U Rs < Open-CLIP, 15 clusters, 3 sentences, f = .2 * wgtd

Quantitative Results Qualitative Results (SR?)
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