

What could go wrong?

Discovering and describing failure modes in computer vision

Gabriela Csurka, Tyler L. Hayes, Diane Larlus, Riccardo Volpi

Summary

We formalize Language-Based Error Explainability (LBEE)

We propose a family of task agnostic methods to tackle LBEE

We introduce a set of metrics to evaluate LBEE performance

We show the effectiveness of the proposed methods on various tasks

Contribution #1: Problem Formulation

Given a **target set** X and a **model** M_{θ} , our goal is to find sentences describing likely failure causes for the model

$$\begin{split} S_{\beta}^{*} = & \left\{ s_{n} \in S \ \middle| \ \omega_{\theta}^{s_{n}} < \omega_{\theta}^{\operatorname{avg}} - \beta \right\} \\ \text{Predefined sentence set} & \text{Predefined margin} \\ \text{Model average performance} & \text{Model average} \\ & \text{on images relevant to } s_{n} & \text{performance on } X \end{split}$$

Contribution #2: A Family of Methods

Step 1: split the images into easy and hard sets based on the model's confidence

NAVER LABS

Europe

Step 2: embed images in the CLIP space and cluster the hard and easy sets independently

Step 3: assign to each hard prototype the closest easy prototype in this space

Step 4: select sentences for hard clusters in the CLIP space based on cosine similarities with the cluster prototypes that are not relevant for the closest easy clusters

Step 5: aggregate cluster-specific sentence sets to produce the global output (\mathcal{R}_s)

Contribution #3: Evaluation Metrics

Given a hard cluster c_i^h and set of selected sentences \mathcal{R}_i^h

Hardness ratio (HR): ratio of sentences pointing to reasons for model failure
Correctness Ratio (CR): average ratio of images that are relevant to individual sentences

$$HR_{i} = \frac{\left|\left\{\forall s_{k} \in \mathcal{R}_{i}^{h} \mid \omega_{\theta}^{avg} - \omega_{\theta}^{k} > \beta\right\}\right|}{\left|\mathcal{R}_{i}^{h}\right|} \qquad CR_{i} = \frac{1}{\left|\mathcal{R}_{i}^{h}\right|} \sum_{s_{k} \in \mathcal{R}_{i}^{h}} \frac{1}{\left|c_{i}^{h}\right|} \sum_{x \in c_{i}^{h}} \Gamma\left(x, s_{k}\right)$$

Given S^*_{β} and the overall output ($\mathcal{R}_S = \cup \mathcal{R}^h_i$)

True positive rate (TPR): evaluates how well S^{*}_β is covered
Jaccard Index (JI): measures coverage while penalizing false positives

$$TPR = \frac{|S_{\beta}^* \cap \mathcal{R}_S|}{|S_{\beta}^*|} \qquad JI = \frac{|S_{\beta}^* \cap \mathcal{R}_S|}{|S_{\beta}^* \cup \mathcal{R}_S|}$$

Quantitative Results

] TopS	PDiff	SetDiff	E F	FPDiff	
 1						1.0

Experimental Setup

 \mathcal{R}_S

Tasks and datasets:

- Urban scene segmentation: ACDC, IDD, WD2
- **Classification with spurious correlations**: NICO $^{75/85/95}_{++}$
- ImageNet-1K classification

Methods:

- TopS: top ranked sentences based on cosine similarity
- PDiff: rank based on prototype difference
- FPDiff: Pdiff filtered with TopS
- SetDiff: Sentence set differences.

Default design choices:

♦ Open-CLIP, 15 clusters, 3 sentences, $β = .2 * ω_{θ}^{std}$

TopS "stage indoor" "arena performance" "taken in a basement" "th

SetDiff "basement" "stage indoor" "thumbnail image" FPDiff "blurry image" "stage outdoor" "stage indoor"

PDiff

"with motion blur"

"blurry image"

"stage outdoor"